×

Probabilistic physics-guided transfer learning for material property prediction in extrusion deposition additive manufacturing. (English) Zbl 1539.74027

Summary: We introduce the concept of physics-guided transfer learning to predict the thermal conductivity of an additively manufactured short-fiber reinforced polymer (SFRP) using micro-structural characteristics extracted from tensile tests. Developing composite manufacturing digital twins for SFRP composite processes like extrusion deposition additive manufacturing (EDAM) require extensive experimental material characterization. Even the same material system printed on different EDAM systems can result in significant changes to the printed micro-structure, affecting the mechanical and transport properties. This, in turn, makes characterization efforts expensive and time-consuming. Therefore, the objective of the paper is to address this experimental bottleneck and use prior information about the material manufactured in one extrusion system to predict its properties when manufactured in another system. To enable this framework, we assume that changes in properties of the same material when manufactured in different systems arise solely due to microstructural changes. To that end, we present a Bayesian framework that can transfer thermal conductivity properties across extrusion deposition additive manufacturing systems. While we discuss the transfer of thermal conductivity properties, the development is such that the framework can be used for the transfer of other properties that depend on microstructural characteristics defined in the manufacturing process. These include the coefficient of thermal expansion, viscoelastic properties, etc. The framework begins by using thermal conductivity data of the composite printed in one extrusion system to probabilistically infer the constituent thermal properties of the fiber and the polymer. Next, by conducting limited tensile tests of the same material printed in another extrusion system, we infer its orientation tensor. Finally, the inferred constituent thermal conductivity properties and the inferred orientation tensor are coupled using a micromechanics model to predict the thermal conductivity properties of the composite printed in the second extrusion system. We experimentally verify the predictions and show that our method provides a reliable framework for transferring material properties while accounting for epistemic and aleatory uncertainties.

MSC:

74A40 Random materials and composite materials
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow

Software:

NUTS; PyMC
Full Text: DOI

References:

[1] E. Barocio, B. Brenken, A. Favaloro, R. Pipes, Extrusion deposition additive manufacturing of composite molds for high-temperature applications, in: Proceedings of the Int. SAMPE Tech. Conf., Seattle, WA, USA, 2017, pp. 22-25.
[2] A.A. Hassen, R. Springfield, J. Lindahl, B. Post, L. Love, C. Duty, U. Vaidya, R.B. Pipes, V. Kunc, The durability of large-scale additive manufacturing composite molds, in: CAMX 2016, 2016, pp. 26-29.
[3] Love, L. J.; Kunc, V.; Rios, O.; Duty, C. E.; Elliott, A. M.; Post, B. K.; Smith, R. J.; Blue, C. A., The importance of carbon fiber to polymer additive manufacturing. J. Mater. Res., 17, 1893-1898 (2014)
[4] Barocio, E., Fusion Bonding of Fiber Reinforced Semi-Crystalline Polymers in Extrusion Deposition Additive Manufacturing (2020), Purdue University Graduate School, (Ph.D. thesis)
[5] Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R. B., Development and validation of extrusion deposition additive manufacturing process simulations. Addit. Manuf., 218-226 (2019)
[6] Barocio, E.; Brenken, B.; Favaloro, A.; Bogdanor, M.; Pipes, R. B., Extrusion deposition additive manufacturing with fiber-reinforced thermoplastic polymers, 450
[7] P. Hébert, S. Mathieu, L. Adam, D. Gianotta, C. Basire, Holistic multiscale simulation approach for additive layer manufacturing of plastics, in: SPE ACCE Conf., 2016, pp. 1-15.
[8] Talagani, M.; DorMohammadi, S.; Dutton, R.; Godines, C.; Baid, H.; Abdi, F.; Kunc, V.; Compton, B.; Simunovic, S.; Duty, C., Numerical simulation of big area additive manufacturing (3D printing) of a full size car. SAMPE J., 4, 27-36 (2015)
[9] Pourali, M.; Peterson, A. M., Thermal modeling of material extrusion additive manufacturing, 115-130
[10] Compton, B. G.; Post, B. K.; Duty, C. E.; Love, L.; Kunc, V., Thermal analysis of additive manufacturing of large-scale thermoplastic polymer composites. Addit. Manuf., 77-86 (2017)
[11] Barocio, E.; Brenken, B.; Favaloro, A.; Pipes, R. B., Interlayer fusion bonding of semi-crystalline polymer composites in extrusion deposition additive manufacturing. Compos. Sci. Technol. (2022)
[12] Davis, C. S.; Hillgartner, K. E.; Han, S. H.; Seppala, J. E., Mechanical strength of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf., 162-166 (2017)
[13] Roschli, A.; Gaul, K. T.; Boulger, A. M.; Post, B. K.; Chesser, P. C.; Love, L. J.; Blue, F.; Borish, M., Designing for big area additive manufacturing. Addit. Manuf., 275-285 (2019)
[14] D’Amico, T.; Peterson, A. M., Bead parameterization of desktop and room-scale material extrusion additive manufacturing: How print speed and thermal properties affect heat transfer. Addit. Manuf. (2020)
[15] A.J. Thomas, E. Barocio, V. Kapre, P. Pibulchinda, F.N. Nguyen, R.B. Pipes, Relationship between flow-controlled fiber orientation and spring-in deformation in extrusion deposition additive manufacturing, in: 2022 International Solid Freeform Fabrication Symposium, 2022.
[16] Pibulchinda, P.; Barocio, E.; Favaloro, A. J.; Pipes, R. B., Influence of printing conditions on the extrudate shape and fiber orientation in extrusion deposition additive manufacturing. Composites B (2023)
[17] Torrey, L.; Shavlik, J., Transfer learning, 242-264
[18] Zheng, X.; Zheng, P.; Zhang, R.-Z., Machine learning material properties from the periodic table using convolutional neural networks. Chem. Sci., 44, 8426-8432 (2018)
[19] Han, D.; Liu, Q.; Fan, W., A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl., 43-56 (2018)
[20] Olivas, E. S.; Guerrero, J. D.M.; Martinez-Sober, M.; Magdalena-Benedito, J. R.; Serrano, L., Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques: Algorithms, Methods, and Techniques (2009), IGI global
[21] Pan, S. J.; Yang, Q., A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 10, 1345-1359 (2010)
[22] Francis, J.; Sabbaghi, A.; Ravi Shankar, M.; Ghasri-Khouzani, M.; Bian, L., Efficient distortion prediction of additively manufactured parts using Bayesian model transfer between material systems. J. Manuf. Sci. Eng., 5 (2020)
[23] N. Menon, S. Mondal, A. Basak, Transferring Process Mapping Knowledge across SS316L and IN718 in Laser Directed Energy Deposition Using Machine Learning, in: 2022 International Solid Freeform Fabrication Symposium, 2022.
[24] Pandiyan, V.; Drissi-Daoudi, R.; Shevchik, S.; Masinelli, G.; Le-Quang, T.; Loge, R.; Wasmer, K., Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process. J. Mater Process. Technol. (2022)
[25] Jung, J.; Kim, Y.; Park, J.; Ryu, S., Transfer learning for enhancing the homogenization-theory-based prediction of elasto-plastic response of particle/short fiber-reinforced composites. Compos. Struct. (2022)
[26] Rai, A.; Mitra, M., A transfer learning approach for damage diagnosis in composite laminated plate using lamb waves. Smart Mater. Struct., 6 (2022)
[27] Zhao, J.; Xie, W.; Yu, D.; Yang, Q.; Meng, S.; Lyu, Q., Deep transfer learning approach for localization of damage area in composite laminates using acoustic emission signal. Polymers, 6, 1520 (2023)
[28] Advani, S. G.; Tucker III, C. L., The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol., 8, 751-784 (1987)
[29] Thomas, A. J.; Barocio, E.; Pipes, R. B., A machine learning approach to determine the elastic properties of printed fiber-reinforced polymers. Compos. Sci. Technol. (2022)
[30] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall., 5, 571-574 (1973)
[31] Tian, W.; Fu, M.; Qi, L.; Ruan, H., Micro-mechanical model for the effective thermal conductivity of the multi-oriented inclusions reinforced composites with imperfect interfaces. Int. J. Heat Mass Transfer (2020)
[32] Hori, M.; Nemat-Nasser, S., Double-inclusion model and overall moduli of multi-phase composites. Mech. Mater., 3, 189-206 (1993)
[33] Görthofer, J.; Schneider, M.; Ospald, F.; Hrymak, A.; Böhlke, T., Computational homogenization of sheet molding compound composites based on high fidelity representative volume elements. Comput. Mater. Sci. (2020)
[34] Ramirez, M. A., In-silico Tensile Testing of Additively Manufactured Short Fiber Composite (2018), Purdue University
[35] Thomas, A. J.; Barocio, E.; Bilionis, I.; Pipes, R. B., Bayesian inference of fiber orientation and polymer properties in short fiber-reinforced polymer composites. Compos. Sci. Technol. (2022)
[36] Hahn, D. W.; Özisik, M. N., Heat Conduction (2012), John Wiley & Sons
[37] ASTM E1461, Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM International, West Conshohocken, PA, 2007.
[38] Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 1, 1929-1958 (2014) · Zbl 1318.68153
[39] Wu, L.; Zulueta, K.; Major, Z.; Arriaga, A.; Noels, L., Bayesian inference of non-linear multiscale model parameters accelerated by a deep neural network. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1441.74192
[40] Pyrialakos, S.; Kalogeris, I.; Sotiropoulos, G.; Papadopoulos, V., A neural network-aided Bayesian identification framework for multiscale modeling of nanocomposites. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.74500
[41] Bishop, C. M., Pattern recognition. Mach. Learn., 9 (2006) · Zbl 1107.68072
[42] Robert, C. P.; Casella, G., The metropolis—hastings algorithm, 231-283
[43] Bilionis, I.; Zabaras, N.; Konomi, B. A.; Lin, G., Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification. J. Comput. Phys., 212-239 (2013) · Zbl 1349.76760
[44] Martin, J. D.; Simpson, T. W., Use of kriging models to approximate deterministic computer models. AIAA J., 4, 853-863 (2005)
[45] M. Eldred, J. Burkardt, Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, in: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2009, p. 976.
[46] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 2, 619-644 (2002) · Zbl 1014.65004
[47] Bilionis, I.; Zabaras, N., Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective. Inverse Problems, 1 (2013) · Zbl 1292.62047
[48] Choy, C., Thermal conductivity of polymers. Polymer, 10, 984-1004 (1977)
[49] Ji, X.; Matsuo, S.; Sottos, N. R.; Cahill, D. G., Anisotropic thermal and electrical conductivities of individual polyacrylonitrile-based carbon fibers. Carbon, 1-9 (2022)
[50] Betancourt, M., A conceptual introduction to Hamiltonian Monte Carlo (2017), arXiv preprint arXiv:1701.02434
[51] Ababou, R.; Bagtzoglou, A. C.; Wood, E. F., On the condition number of covariance matrices in kriging, estimation, and simulation of random fields. Math. Geol., 1, 99-133 (1994) · Zbl 0970.86543
[52] Lee, T.; Gosain, A. K.; Bilionis, I.; Tepole, A. B., Predicting the effect of aging and defect size on the stress profiles of skin from advancement, rotation and transposition flap surgeries. J. Mech. Phys. Solids, 572-590 (2019)
[53] Salvatier, J.; Wiecki, T. V.; Fonnesbeck, C., Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. (2016)
[54] Warnes, J. J.; Ripley, B. D., Problems with likelihood estimation of covariance functions of spatial Gaussian processes. Biometrika, 3, 640-642 (1987) · Zbl 0628.62087
[55] Moon, H.; Dean, A.; Santner, T., Algorithms for generating maximin orthogonal and Latin hypercube designs. J. Stat. Theory Pract., 81-98 (2011) · Zbl 05902637
[56] Hoffman, M. D.; Gelman, A., The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 1, 1593-1623 (2014) · Zbl 1319.60150
[57] Kennedy, M. C.; O’Hagan, A., Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B Stat. Methodol., 3, 425-464 (2001) · Zbl 1007.62021
[58] Lin, Q.; Zhou, Q.; Hu, J.; Cheng, Y.; Hu, Z., A sequential sampling approach for multi-fidelity surrogate modeling-based robust design optimization. J. Mech. Des., 11 (2022)
[59] Fu, S.-Y.; Mai, Y.-W., Thermal conductivity of misaligned short-fiber-reinforced polymer composites. J. Appl. Polym. Sci., 6, 1497-1505 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.