×

Numerical homogenization of spatial network models. (English) Zbl 1539.74002

Summary: We present and analyze a methodology for numerical homogenization of spatial networks models, e.g. heat conduction and linear deformation in large networks of slender objects, such as paper fibers. The aim is to construct a coarse model of the problem that maintains high accuracy also on the micro-scale. By solving decoupled problems on local subgraphs we construct a low dimensional subspace of the solution space with good approximation properties. The coarse model of the network is expressed by a Galerkin formulation and can be used to perform simulations with different source and boundary data, at a low computational cost. We prove optimal convergence to the micro-scale solution of the proposed method under mild assumptions on the homogeneity, connectivity, and locality of the network on the coarse scale. The theoretical findings are numerically confirmed for both scalar-valued (heat conduction) and vector-valued (linear deformation) models.

MSC:

74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
74Qxx Homogenization, determination of effective properties in solid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow

References:

[1] Chu, J.; Engquist, B.; Prodanović, M.; Tsai, R., A multiscale method coupling network and continuum models in porous media I: steady-state single phase flow. Multiscale Model. Simul., 515-549 (2012) · Zbl 1428.76115
[2] Kettil, G.; Målqvist, A.; Mark, A.; Fredlund, M.; Wester, K.; Edelvik, F., Numerical upscaling of discrete network models. BIT, 67-92 (2020) · Zbl 1431.65208
[3] Svenning, E.; Mark, A.; Edelvik, F.; Glatt, E.; Rief, S.; Wiegmann, A.; Martinsson, L.; Lai, R.; Fredlund, M.; Nyman, U., Multiphase simulation of fiber suspension flows using immersed boundary methods. Nord. Pulp Pap. Res. J., 2, 184-191 (2012)
[4] Brandt, A., Multi-level adaptive solutions to boundary-value problems. Math. Comp., 333-390 (1977) · Zbl 0373.65054
[5] Kornhuber, R.; Yserentant, H., Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul., 3, 1017-1036 (2016) · Zbl 1352.65521
[6] Efendiev, Y.; Galvis, J.; Hou, T. Y., Generalized multiscale finite element methods (gmsfem). J. Comput. Phys., 116-135 (2013) · Zbl 1349.65617
[7] Owhadi, H.; Scovel, C.
[8] Må lqvist, A.; Peterseim, D., Localization of elliptic multiscale problems. Math. Comp., 2583-2603 (2014) · Zbl 1301.65123
[9] Målqvist, A.; Peterseim, D., Numerical Homogenization By Localized Orthogonal Decomposition (2020), SIAM Spotlights · Zbl 1479.65001
[10] Ewing, R.; Iliev, O.; Lazarov, R.; Rybak, I.; Willems, J., A simplified method for upscaling composite materials with high contrast of the conductivity. SIAM J. Sci. Comput., 2568-2586 (2009) · Zbl 1202.80025
[11] Iliev, O.; Lazarov, R.; Willems, J., Fast numerical upscaling of heat equation for fibrous materials. Comput. Vis. Sci., 275-285 (2010) · Zbl 1419.74099
[12] Bishop, J.; Emery, J.; R., Field; Weinberger, C.; Littlewood, D., Direct numerical simulations in solid mechanics for understanding the macroscale effects of microscale material variability. Comput. Methods Appl. Mech. Eng., 262-289 (2015) · Zbl 1423.74692
[13] X. Yin, W. Chen, A. To, C. McVeigh, W. Kam Liu, Statistical volume element method for predicting microstructure-constitutive property relations, Comput. Methods Appl. Mech. Eng., 197 (43-44) 3516-3529. · Zbl 1194.74291
[14] Mansour, R.; Kulachenko, A., 4 - stochastic constitutive model of thin fibre networks, 75-112
[15] Della Rossa, F.; D’Angelo, C.; Quarteroni, F., A distributed model of traffic flows on extended regions. Netw. Heterog. Media, 525-544 (2010) · Zbl 1259.35201
[16] Görtz, M.; Hellman, F.; Målqvist, A., Iterative solution of spatial network models by subspace decomposition. Math. Comp., 233-258 (2024) · Zbl 1525.65025
[17] Scott, R.; Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 483-493 (1990) · Zbl 0696.65007
[18] Hellman, F.; Målqvist, A., Numerical homogenization of elliptic PDEs with similar coefficients. Multimedia Model. Simul., 650-674 (2019) · Zbl 1428.65085
[19] Kornhuber, R.; Peterseim, D.; Yserentant, H., An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comp., 314, 2765-2774 (2018) · Zbl 1397.65233
[20] Henning, P.; Målqvist, A., Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci. Comput., A1609-A1634 (2014) · Zbl 1303.35007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.