×

Computational methods for large-scale inverse problems: a survey on hybrid projection methods. (English) Zbl 1539.65053

Summary: This paper surveys an important class of methods that combine iterative projection methods and variational regularization methods for large-scale inverse problems. Iterative methods such as Krylov subspace methods are invaluable in the numerical linear algebra community and have proved important in solving inverse problems due to their inherent regularizing properties and their ability to handle large-scale problems. Variational regularization describes a broad and important class of methods that are used to obtain reliable solutions to inverse problems, whereby one solves a modified problem that incorporates prior knowledge. Hybrid projection methods combine iterative projection methods with variational regularization techniques in a synergistic way, providing researchers with a powerful computational framework for solving very large inverse problems. Although the idea of a hybrid Krylov method for linear inverse problems goes back to the 1980s, several recent advances on new regularization frameworks and methodologies have made this field ripe for extensions, further analyses, and new applications. In this paper, we provide a practical and accessible introduction to hybrid projection methods in the context of solving large (linear) inverse problems.

MSC:

65F22 Ill-posedness and regularization problems in numerical linear algebra
15A29 Inverse problems in linear algebra
68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

References:

[1] J. Adler, H. Kohr, and O. Öktem, Operator Discretization Library (ODL), 2017, https://doi.org/10.5281/zenodo.556409.
[2] B. M. Afkham, J. Chung, and M. Chung, Learning regularization parameters of inverse problems via deep neural networks, Inverse Problems, 37 (2021), art. 105017. · Zbl 07411952
[3] A. Alqahtani, S. Gazzola, L. Reichel, and G. Rodriguez, On the block Lanczos and block Golub-Kahan reduction methods applied to discrete ill-posed problems, Numer. Linear Algebra Appl., 28 (2021), art. e2376. · Zbl 07478608
[4] H. Andrews and B. Hunt, Digital Image Restoration, Prentice Hall, Englewood Cliffs, NJ, 1977.
[5] M. Arioli, Generalized Golub-Kahan bidiagonalization and stopping criteria, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 571-592, https://doi.org/10.1137/120866543. · Zbl 1273.65041
[6] S. R. Arridge, M. M. Betcke, and L. Harhanen, Iterated preconditioned LSQR method for inverse problems on unstructured grids, Inverse Problems, 30 (2014), art. 075009. · Zbl 1321.65094
[7] J. Baglama and L. Reichel, Augmented implicitly restarted Lanczos bidiagonalization methods, SIAM J. Sci. Comput., 27 (2005), pp. 19-42, https://doi.org/10.1137/04060593X. · Zbl 1087.65039
[8] J. Baglama, L. Reichel, and D. Richmond, An augmented LSQR method, Numer. Algorithms, 64 (2013), pp. 263-293. · Zbl 1273.65059
[9] J. M. Bardsley, Stopping rules for a nonnegatively constrained iterative method for ill-posed Poisson imaging problems, BIT, 48 (2008), pp. 651-664. · Zbl 1162.65332
[10] J. M. Bardsley, Computational Uncertainty Quantification for Inverse Problems, Comput. Sci. Engrg. 19, SIAM, 2018, https://doi.org/10.1137/1.9781611975383. · Zbl 1435.60001
[11] J. L. Barlow, Reorthogonalization for the Golub-Kahan-Lanczos bidiagonal reduction, Numer. Math., 124 (2013), pp. 237-278. · Zbl 1272.65034
[12] F. Bauer, M. Gutting, and M. A. Lukas, Evaluation of parameter choice methods for regularization of ill-posed problems in geomathematics, in Handbook of Geomathematics, W. Freeden, M. Z. Nashed, and T. Sonar, eds., Springer, Berlin, Heidelberg, 2015, pp. 1713-1774.
[13] F. Bauer and M. A. Lukas, Comparing parameter choice methods for regularization of ill-posed problems, Math. Comput. Simul., 81 (2011), pp. 1795-1841. · Zbl 1220.65063
[14] F. S. V. Bazán, Fixed-point iterations in determining the Tikhonov regularization parameter, Inverse Problems, 24 (2008), art. 035001. · Zbl 1147.65033
[15] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183-202, https://doi.org/10.1137/080716542. · Zbl 1175.94009
[16] S. Berisha and J. G. Nagy, Iterative methods for image restoration, in Academic Press Library in Signal Processing, Vol. 4, Elsevier, 2014, pp. 193-247.
[17] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, IOP, London, 1998. · Zbl 0914.65060
[18] A. Biguri, M. Dosanjh, S. Hancock, and M. Soleimani, TIGRE: A MATLAB-GPU toolbox for CBCT image reconstructions, Biomed. Phys. Eng. Express, 2 (2016), art. 055010.
[19] \AA. Björck, A Bidiagonalization Algorithm for Solving Ill-Posed Systems of Equations, Rep. LiTHMAT-80-33, Department of Mathematics, Linköping University, Sweden, 1980.
[20] \AA. Björck, A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations, BIT, 28 (1988), pp. 659-670. · Zbl 0658.65041
[21] \AA. Björck, Numerical Methods for Least Squares Problems, SIAM, 1996, https://doi.org/10.1137/1.9781611971484. · Zbl 0847.65023
[22] \AA. Björck, E. Grimme, and P. van Dooren, An implicit shift bidiagonalization algorithm for ill-posed systems, BIT, 34 (1994), pp. 510-534. · Zbl 0821.65023
[23] A. F. Boden, D. C. Redding, R. J. Hanisch, and J. Mo, Massively parallel spatially-variant maximum likelihood restoration of Hubble Space Telescope imagery, J. Opt. Soc. Amer. A, 13 (1996), pp. 1537-1545.
[24] N. K. Bose and K. J. Boo, High-resolution image reconstruction with multisensors, Int. J. Imaging Syst. Technol., 9 (1998), pp. 294-304.
[25] C. Brezinski, P. Novati, and M. Redivo-Zaglia, A rational Arnoldi approach for ill-conditioned linear systems, J. Comput. Appl. Math., 236 (2012), pp. 2063-2077. · Zbl 1254.65051
[26] D. A. Brown, A. Saibaba, and S. Vallélian, Low-rank independence samplers in hierarchical Bayesian inverse problems, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 1076-1100, https://doi.org/10.1137/17M1137218. · Zbl 1401.65040
[27] A. Buccini and L. Reichel, An \(\ell_2-\ell_q\) regularization method for large discrete ill-posed problems, J. Sci. Comput., 78 (2019), pp. 1526-1549. · Zbl 1502.65017
[28] A. Buccini and L. Reichel, An \(\ell^p-\ell^q\) minimization method with cross-validation for the restoration of impulse noise contaminated images, J. Comput. Appl. Math., 375 (2020), art. 112824. · Zbl 1524.94008
[29] T. Bui-Thanh, C. Burstedde, O. Ghattas, J. Martin, G. Stadler, and L. C. Wilcox, Extreme-scale UQ for Bayesian inverse problems governed by PDEs, in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, IEEE Computer Society Press, 2012, art. 3.
[30] T. Bui-Thanh and O. Ghattas, A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors, Inverse Probl. Imaging, 9 (2015), pp. 27-53. · Zbl 1347.49045
[31] T. Bui-Thanh, O. Ghattas, J. Martin, and G. Stadler, A computational framework for infinite-dimensional Bayesian inverse problems. Part I: The linearized case, with application to global seismic inversion, SIAM J. Sci. Comput., 35 (2013), pp. A2494-A2523, https://doi.org/10.1137/12089586X. · Zbl 1287.35087
[32] T. M. Buzug, Computed Tomography, Springer, Berlin, 2008.
[33] D. Calvetti, Preconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion perspective, J. Comput. Appl. Math., 198 (2007), pp. 378-395. · Zbl 1101.65043
[34] D. Calvetti, G. H. Golub, and L. Reichel, Estimation of the L-curve via Lanczos bidiagonalization, BIT, 39 (1999), pp. 603-619. · Zbl 0945.65044
[35] D. Calvetti, P. C. Hansen, and L. Reichel, L-curve curvature bounds via Lanczos bidiagonalization, Electron. Trans. Numer. Anal., 14 (2002), pp. 20-35. · Zbl 1029.65041
[36] D. Calvetti, J. P. Kaipio, and E. Somersalo, Inverse problems in the Bayesian framework, Inverse Problems, 30 (2014), art. 110301. · Zbl 1305.00104
[37] D. Calvetti, B. Lewis, and L. Reichel, On the choice of subspace for iterative methods for linear discrete ill-posed problems, Appl. Math. Comput. Sci., 11 (2001), pp. 1069-1092. · Zbl 0994.65043
[38] D. Calvetti, B. Lewis, and L. Reichel, GMRES, L-curves, and discrete ill-posed problems, BIT, 42 (2002), pp. 44-65. · Zbl 1003.65040
[39] D. Calvetti, B. Lewis, and L. Reichel, A hybrid GMRES and TV-norm-based method for image restoration, in Advanced Signal Processing Algorithms, Architectures, and Implementations XII, Proc. SPIE 4791, International Society for Optics and Photonics, 2002, pp. 192-200.
[40] D. Calvetti, B. Lewis, and L. Reichel, On the regularizing properties of the GMRES method, Numer. Math., 91 (2002), pp. 605-625. · Zbl 1022.65044
[41] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, Tikhonov regularization and the L-curve for large discrete ill-posed problems, J. Comput. Appl. Math., 123 (2000), pp. 423-446. · Zbl 0977.65030
[42] D. Calvetti, F. Pitolli, E. Somersalo, and B. Vantaggi, Bayes meets Krylov: Statistically inspired preconditioners for CGLS, SIAM Rev., 60 (2018), pp. 429-461, https://doi.org/10.1137/15M1055061. · Zbl 1392.65047
[43] D. Calvetti, M. Pragliola, E. Somersalo, and A. Strang, Sparse reconstructions from few noisy data: Analysis of hierarchical Bayesian models with generalized gamma hyperpriors, Inverse Problems, 36 (2020), art. 025010. · Zbl 1464.62365
[44] D. Calvetti, L. Reichel, and A. Shuibi, Enriched Krylov subspace methods for ill-posed problems, Linear Algebra Appl., 362 (2003), pp. 257-273. · Zbl 1017.65025
[45] D. Calvetti, L. Reichel, and A. Shuibi, L-curve and curvature bounds for Tikhonov regularization, Numer. Algorithms, 35 (2004), pp. 301-314, https://doi.org/10.1023/B:NUMA.0000021764.16526.47. · Zbl 1049.65029
[46] D. Calvetti, L. Reichel, and A. Shuibi, Invertible smoothing preconditioners for linear discrete ill-posed problems, Appl. Numer. Math., 54 (2005), pp. 135-149. · Zbl 1072.65057
[47] D. Calvetti and E. Somersalo, Priorconditioners for linear systems, Inverse Problems, 21 (2005), pp. 1397-1418. · Zbl 1087.65044
[48] D. Calvetti and E. Somersalo, An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing, Vol. 2, Springer Science & Business Media, 2007. · Zbl 1137.65010
[49] D. Calvetti and E. Somersalo, Inverse problems: From regularization to Bayesian inference, Wiley Interdiscip. Rev. Comput. Statist., 10 (2018), art. e1427. · Zbl 07910815
[50] E. J. Candés, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59 (2006), pp. 1207-1223. · Zbl 1098.94009
[51] N. A. Caruso and P. Novati, Convergence analysis of LSQR for compact operator equations, Linear Algebra Appl., 583 (2019), pp. 146-164. · Zbl 1425.65048
[52] T. Cho, J. Chung, S. M. Miller, and A. K. Saibaba, Computationally efficient methods for large-scale atmospheric inverse modeling, Geosci. Model Dev., 15 (2022), pp. 5547-5565.
[53] E. Chow and Y. Saad, Preconditioned Krylov subspace methods for sampling multivariate Gaussian distributions, SIAM J. Sci. Comput., 36 (2014), pp. A588-A608, https://doi.org/10.1137/130920587. · Zbl 1296.60087
[54] J. Chung, M. Chung, S. Gazzola, and M. Pasha, Efficient learning methods for large-scale optimal inversion design, Numer. Algebra Control Optim., 14 (2024), pp. 137-159.
[55] J. Chung and S. Gazzola, Flexible Krylov methods for \(\ell_p\) regularization, SIAM J. Sci. Comput., 41 (2019), pp. S149-S171, https://doi.org/10.1137/18M1194456. · Zbl 1436.65043
[56] J. Chung, E. Haber, and J. Nagy, Numerical methods for coupled super-resolution, Inverse Problems, 22 (2006), pp. 1261-1272. · Zbl 1147.93302
[57] J. Chung, M. E. Kilmer, and D. P. O’Leary, A framework for regularization via operator approximation, SIAM J. Sci. Comput., 37 (2015), pp. B332-B359, https://doi.org/10.1137/130945363. · Zbl 1320.65058
[58] J. Chung, S. Knepper, and J. G. Nagy, Large-Scale Inverse Problems in Imaging, Springer, New York, 2015, pp. 47-90. · Zbl 1331.94015
[59] J. Chung and J. Nagy, An efficient iterative approach for large-scale separable nonlinear inverse problems, SIAM J. Sci. Comput., 31 (2010), pp. 4654-4674, https://doi.org/10.1137/080732213. · Zbl 1205.65160
[60] J. Chung, J. G. Nagy, and D. P. O’Leary, A weighted GCV method for Lanczos hybrid regularization, Electron. Trans. Numer. Anal., 28 (2008), pp. 149-167. · Zbl 1171.65029
[61] J. Chung and K. Palmer, A hybrid LSMR algorithm for large-scale Tikhonov regularization, SIAM J. Sci. Comput., 37 (2015), pp. S562-S580, https://doi.org/10.1137/140975024. · Zbl 1325.65057
[62] J. Chung and A. Saibaba, Generalized hybrid iterative methods for large-scale Bayesian inverse problems, SIAM J. Sci. Comput., 39 (2017), pp. S24-S46, https://doi.org/10.1137/16M1081968. · Zbl 1422.65065
[63] J. Chung, A. K. Saibaba, M. Brown, and E. Westman, Efficient generalized Golub-Kahan based methods for dynamic inverse problems, Inverse Problems, 34 (2018), art. 024005. · Zbl 1385.65034
[64] J. Chung, P. Sternberg, and C. Yang, High performance \(3\)-D image reconstruction for molecular structure determination, Internat. J. High Performance Comput. Appl., 24 (2010), pp. 117-135.
[65] S. Cipolla, M. Donatelli, and F. Durastante, Regularization of inverse problems by an approximate matrix-function technique, Numer. Algorithms, 88 (2021), pp. 1275-1308. · Zbl 1490.65067
[66] S. C. Constable, R. L. Parker, and C. G. Constable, Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data, Geophys., 52 (1987), pp. 289-300.
[67] M. Dashti, S. Harris, and A. Stuart, Besov priors for Bayesian inverse problems, Inverse Probl. Imaging, 6 (2012), pp. 183-200. · Zbl 1243.62032
[68] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, Iteratively reweighted least squares minimization for sparse recovery, Comm. Pure Appl. Math., 63 (2010), pp. 1-38, https://doi.org/10.1002/cpa.20303. · Zbl 1202.65046
[69] M. Donatelli, D. Martin, and L. Reichel, Arnoldi methods for image deblurring with anti-reflective boundary conditions, Appl. Math. Comput., 253 (2015), pp. 135-150. · Zbl 1338.94006
[70] Y. Dong, H. Garde, and P. C. Hansen, \(R^3\) GMRES: Including prior information in GMRES-type methods for discrete inverse problems, Electron. Trans. Numer. Anal., 42 (2014), pp. 136-146. · Zbl 1307.65049
[71] D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 41 (1995), pp. 613-627. · Zbl 0820.62002
[72] L. Eldén, Algorithms for the regularization of ill-conditioned least squares problems, BIT, 17 (1977), pp. 134-145. · Zbl 0362.65105
[73] L. Eldén, A weighted pseudoinverse, generalized singular values, and constrained least squares problems, BIT, 22 (1982), pp. 487-502. · Zbl 0509.65019
[74] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Math. Appl. 375, Springer Science & Business Media, 1996. · Zbl 0859.65054
[75] H. W. Engl and P. Kügler, Nonlinear inverse problems: Theoretical aspects and some industrial applications, in Multidisciplinary Methods for Analysis Optimization and Control of Complex Systems, Springer, 2005, pp. 3-47.
[76] C. L. Epstein, Introduction to the Mathematics of Medical Imaging, 2nd ed., SIAM, Philadelphia, 2007, https://doi.org/10.1137/9780898717792.
[77] C. Fenu, L. Reichel, and G. Rodriguez, GCV for Tikhonov regularization via global Golub-Kahan decomposition, Numer. Linear Algebra Appl., 23 (2016), pp. 467-484, https://doi.org/10.1002/nla.2034. · Zbl 1374.65064
[78] H. Flath, L. Wilcox, V. Akçelik, J. Hill, B. van Bloemen Waanders, and O. Ghattas, Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations, SIAM J. Sci. Comput., 33 (2011), pp. 407-432, https://doi.org/10.1137/090780717. · Zbl 1229.65174
[79] D. C.-L. Fong and M. Saunders, LSMR: An iterative algorithm for sparse least-squares problems, SIAM J. Sci. Comput., 33 (2011), pp. 2950-2971, https://doi.org/10.1137/10079687X. · Zbl 1232.65052
[80] M. Fornasier, S. Peter, H. Rauhut, and S. Worm, Conjugate gradient acceleration of iteratively re-weighted least squares methods, Comput. Optim. Appl., 65 (2016), pp. 205-259. · Zbl 1353.90115
[81] M. Fornasier and H. Rauhut, Compressive sensing, in Handbook of Mathematical Methods in Imaging, O. Scherzer, ed., Springer, New York, 2011, pp. 187-228, https://doi.org/10.1007/978-0-387-92920-0_6. · Zbl 1259.94017
[82] A. Frommer and P. Maass, Fast CG-based methods for Tikhonov-Phillips regularization, SIAM J. Sci. Comput., 20 (1999), pp. 1831-1850, https://doi.org/10.1137/S1064827596313310. · Zbl 0943.65068
[83] S. Gazzola, P. C. Hansen, and J. G. Nagy, IR Tools: A MATLAB package of iterative regularization methods and large-scale test problems, Numer. Algorithms, 81 (2019), pp. 773-811; software available at https://github.com/jnagy1/IRtools. · Zbl 1415.65003
[84] S. Gazzola, M. E. Kilmer, J. G. Nagy, O. Semerci, and E. L. Miller, An inner-outer iterative method for edge preservation in image restoration and reconstruction, Inverse Problems, 36 (2020), art. 124004. · Zbl 1454.65012
[85] S. Gazzola and M. S. Landman, Flexible GMRES for total variation regularization, BIT, 59 (2019), pp. 721-746. · Zbl 1420.65021
[86] S. Gazzola and M. S. Landman, Krylov methods for inverse problems: Surveying classical, and introducing new, algorithmic approaches, GAMM-Mitt., 43 (2020), art. e202000017. · Zbl 1541.65023
[87] S. Gazzola and M. S. Landman, Regularization by inexact Krylov methods with applications to blind deblurring, SIAM J. Matrix Anal. Appl., 42 (2021), pp. 1528-1552, https://doi.org/10.1137/21M1402066. · Zbl 1483.65060
[88] S. Gazzola, C. Meng, and J. G. Nagy, Krylov methods for low-rank regularization, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 1477-1504, https://doi.org/10.1137/19M1302727. · Zbl 1460.65043
[89] S. Gazzola and J. G. Nagy, Generalized Arnoldi-Tikhonov method for sparse reconstruction, SIAM J. Sci. Comput., 36 (2014), pp. B225-B247, https://doi.org/10.1137/130917673. · Zbl 1296.65061
[90] S. Gazzola, J. G. Nagy, and M. Sabaté Landman, Iteratively reweighted FGMRES and FLSQR for sparse reconstruction, SIAM J. Sci. Comput., 43 (2021), pp. S47-S69, https://doi.org/10.1137/20M1333948. · Zbl 1490.65068
[91] S. Gazzola, S. Noschese, P. Novati, and L. Reichel, Arnoldi decomposition, GMRES, and preconditioning for linear discrete ill-posed problems, Appl. Numer. Math., 142 (2019), pp. 102-121. · Zbl 1417.65119
[92] S. Gazzola and P. Novati, Automatic parameter setting for Arnoldi-Tikhonov methods, J. Comput. Appl. Math., 256 (2014), pp. 180-195. · Zbl 1314.65061
[93] S. Gazzola and P. Novati, Inheritance of the discrete Picard condition in Krylov subspace methods, BIT, 56 (2016), pp. 893-918. · Zbl 1353.65023
[94] S. Gazzola, P. Novati, and M. R. Russo, Embedded techniques for choosing the parameter in Tikhonov regularization, Numer. Linear Algebra Appl., 21 (2014), pp. 796-812. · Zbl 1340.65068
[95] S. Gazzola, P. Novati, and M. R. Russo, On Krylov projection methods and Tikhonov regularization, Electron. Trans. Numer. Anal., 44 (2015), pp. 83-123. · Zbl 1312.65065
[96] S. Gazzola, E. Onunwor, L. Reichel, and G. Rodriguez, On the Lanczos and Golub-Kahan reduction methods applied to discrete ill-posed problems, Numer. Linear Algebra Appl., 23 (2016), pp. 187-204. · Zbl 1413.65120
[97] T. Goldstein and S. Osher, The split Bregman method for L\textup1-regularized problems, SIAM J. Imaging Sci., 2 (2009), pp. 323-343, https://doi.org/10.1137/080725891. · Zbl 1177.65088
[98] G. Golub and V. Pereyra, Separable nonlinear least squares: The variable projection method and its applications, Inverse Problems, 19 (2003), pp. R1-R26. · Zbl 1022.65014
[99] G. H. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215-223. · Zbl 0461.62059
[100] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), pp. 205-224, https://doi.org/10.1137/0702016. · Zbl 0194.18201
[101] G. H. Golub, F. T. Luk, and M. L. Overton, A block Lanczos method for computing the singular values and corresponding singular vectors of a matrix, ACM Trans. Math. Software, 7 (1981), pp. 149-169. · Zbl 0466.65022
[102] G. H. Golub and G. Meurant, Matrices, Moments, and Quadrature with Applications, Princeton University Press, Princeton, NJ, 2010. · Zbl 1217.65056
[103] G. H. Golub and D. P. O’Leary, Some history of the conjugate gradient and Lanczos algorithms: 1948-1976, SIAM Rev., 31 (1989), pp. 50-102, https://doi.org/10.1137/1031003. · Zbl 0673.65017
[104] G. H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal., 10 (1973), pp. 413-432, https://doi.org/10.1137/0710036. · Zbl 0258.65045
[105] G. H. Golub and V. Pereyra, Separable nonlinear least squares: The variable projection method and its applications, Inverse Problems, 19 (2003), pp. R1-R26. · Zbl 1022.65014
[106] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 2013. · Zbl 1268.65037
[107] G. H. Golub and U. Von Matt, Quadratically constrained least squares and quadratic problems, Numer. Math., 59 (1991), pp. 561-580. · Zbl 0745.65029
[108] G. H. Golub and U. Von Matt, Generalized cross-validation for large-scale problems, J. Comput. Graph. Statist., 6 (1997), pp. 1-34.
[109] R. A. Gonsalves, Phase diversity in adaptive optics, Opt. Eng., 21 (1982), pp. 829-832.
[110] I. F. Gorodnitsky and B. D. Rao, A new iterative weighted norm minimization algorithm and its applications, in IEEE Sixth SP Workshop on Statistical Signal and Array Processing, 1992, pp. 412-415.
[111] D. Gürsoy, F. D. Carlo, X. Xiao, and C. Jacobsen, TomoPy: A framework for the analysis of synchrotron tomographic data, J. Synchrotron Radiat., 21 (2014), pp. 1188-1193.
[112] E. Haber, Computational Methods in Geophysical Electromagnetics, SIAM, Philadelphia, 2014, https://doi.org/10.1137/1.9781611973808. · Zbl 1304.86001
[113] E. Haber, U. M. Ascher, and D. Oldenburg, On optimization techniques for solving nonlinear inverse problems, Inverse Problems, 16 (2000), pp. 1263-1280. · Zbl 0974.49021
[114] E. Haber, L. Horesh, and L. Tenorio, Numerical methods for experimental design of large-scale linear ill-posed inverse problems, Inverse Problems, 24 (2008), art. 055012. · Zbl 1153.65062
[115] E. Haber and D. Oldenburg, A GCV based method for nonlinear ill-posed problems, Comput. Geosci., 4 (2000), pp. 41-63. · Zbl 0947.65103
[116] E. Haber and L. Tenorio, Learning regularization functionals-A supervised training approach, Inverse Problems, 19 (2003), pp. 611-626. · Zbl 1046.90087
[117] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217-288, https://doi.org/10.1137/090771806. · Zbl 1269.65043
[118] M. Hanke, Regularization with differential operators: An iterative approach, Numer. Funct. Anal. Optim., 13 (1992), pp. 523-540. · Zbl 0769.65027
[119] M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Pitman Res. Notes Math., Longman Scientific & Technical, Harlow, Essex, 1995. · Zbl 0830.65043
[120] M. Hanke, The minimal error conjugate gradient method is a regularization method, Proc. Amer. Math. Soc., 123 (1995), pp. 3487-3497. · Zbl 0851.65033
[121] M. Hanke, On Lanczos based methods for the regularization of discrete ill-posed problems, BIT, 41 (2001), pp. 1008-1018.
[122] M. Hanke and P. C. Hansen, Regularization methods for large-scale problems, Surveys Math. Indust., 3 (1993), pp. 253-315. · Zbl 0805.65058
[123] M. Hanke, J. G. Nagy, and R. J. Plemmons, Preconditioned iterative regularization for ill-posed problems, in Numerical Linear Algebra, L. Reichel, A. Ruttan, and R. S. Varga, eds., de Gruyter, Berlin, 1993, pp. 141-163. · Zbl 0794.65039
[124] P. C. Hansen, The discrete Picard condition for discrete ill-posed problems, BIT, 30 (1990), pp. 658-672. · Zbl 0723.65147
[125] P. C. Hansen, Regularization Tools: A MATLAB package for analysis and solution of discrete ill-posed problems, Numer. Algorithms, 6 (1994), pp. 1-35. · Zbl 0789.65029
[126] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, 1998, Philadelphia, PA, https://doi.org/10.1137/1.9780898719697.
[127] P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, Philadelphia, PA, 2010, https://doi.org/10.1137/1.9780898718836. · Zbl 1197.65054
[128] P. C. Hansen, Oblique projections and standard-form transformations for discrete inverse problems, Numer. Linear Algebra Appl., 20 (2013), pp. 250-258. · Zbl 1289.65097
[129] P. C. Hansen, Y. Dong, and K. Abe, Hybrid enriched bidiagonalization for discrete ill-posed problems, Numer. Linear Algebra Appl., 26 (2019), art. e2230. · Zbl 1449.65093
[130] P. C. Hansen, K. Hayami, and K. Morikuni, GMRES methods for tomographic reconstruction with an unmatched back projector, J. Comput. Appl. Math., 413 (2022), art. 114352, https://doi.org/10.1016/j.cam.2022.114352. · Zbl 1489.65060
[131] P. C. Hansen and T. K. Jensen, Smoothing-norm preconditioning for regularizing minimum-residual methods, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 1-14, https://doi.org/10.1137/050628453. · Zbl 1154.65028
[132] P. C. Hansen and T. K. Jensen, Noise propagation in regularizing iterations for image deblurring, Electron. Trans. Numer. Anal., 31 (2008), pp. 204-220. · Zbl 1171.65032
[133] P. C. Hansen and J. S. Jørgensen, AIR Tools II: Algebraic iterative reconstruction methods, improved implementation, Numer. Algorithms, 79 (2018), pp. 107-137, https://doi.org/doi:10.1007/s11075-017-0430-x; software available at https://github.com/jakobsj/AIRToolsII/. · Zbl 1397.65007
[134] P. C. Hansen, J. S. Jørgensen, and W. R. B. Lionheart, Computed Tomography: Algorithms, Insight, and Just Enough Theory, SIAM, Philadelphia, PA, 2021, https://doi.org/10.1137/1.9781611976670. · Zbl 1482.94006
[135] P. C. Hansen, J. S. Jørgensen, and P. W. Rasmussen, Stopping rules for algebraic iterative reconstruction methods in computed tomography, in 2021 21st International Conference on Computational Science and Its Applications (ICCSA), IEEE, 2021, pp. 60-70, https://doi.org/10.1109/ICCSA54496.2021.00019.
[136] P. C. Hansen, M. E. Kilmer, and R. Kjeldsen, Exploiting residual information in the parameter choice for discrete ill-posed problems, BIT, 46 (2006), pp. 41-59. · Zbl 1091.65038
[137] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring Images: Matrices, Spectra, and Filtering, SIAM, Philadelphia, PA, 2006, https://doi.org/10.1137/1.9780898718874. · Zbl 1112.68127
[138] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487-1503, https://doi.org/10.1137/0914086. · Zbl 0789.65030
[139] J. L. Herring, J. G. Nagy, and L. Ruthotto, LAP: A linearize and project method for solving inverse problems with coupled variables, Sampling Theory Signal Image Process., 17 (2018), pp. 127-151. · Zbl 1411.65048
[140] I. Hnětynková, M. Kubínová, and M. Plešinger, Noise representation in residuals of LSQR, LSMR, and CRAIG regularization, Linear Algebra Appl., 533 (2017), pp. 357-379. · Zbl 1391.15062
[141] I. Hnětynková, M. Plešinger, and Z. Strakos, The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data, BIT, 49 (2009), pp. 669-696. · Zbl 1184.65044
[142] M. E. Hochstenbach and L. Reichel, An iterative method for Tikhonov regularization with a general linear regularization operator, J. Integral Equations Appl., 22 (2010), pp. 465-482. · Zbl 1210.65092
[143] M. E. Hochstenbach and L. Reichel, Subspace-restricted singular value decompositions for linear discrete ill-posed problems, J. Comput. Appl. Math., 235 (2010), pp. 1053-1064. · Zbl 1204.65038
[144] B. Hofmann, Regularization of nonlinear problems and the degree of ill-posedness, in Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine, G. Anger, R. Gorenflo, H. Jochmann, H. Moritz, and W. Webers, eds., Akademie Verlag, Berlin, 1993, pp. 174-188. · Zbl 0812.47065
[145] G. Huang, A. Lanza, S. Morigi, L. Reichel, and F. Sgallari, Majorization-minimization generalized Krylov subspace methods for \(\ell_p-\ell_q\) optimization applied to image restoration, BIT, 57 (2017), pp. 351-378. · Zbl 1369.65073
[146] Y. Huang and Z. Jia, Some results on the regularization of LSQR for large-scale discrete ill-posed problems, Sci. China Math., 60 (2017), pp. 701-718. · Zbl 1453.65080
[147] D. Hunter and K. Lange, A tutorial on MM algorithms, Amer. Statist., 58 (2004), pp. 20-37.
[148] I. C. F. Ipsen and C. D. Meyer, The idea behind Krylov methods, Amer. Math. Monthly, 105 (1998), pp. 889-899. · Zbl 0982.65034
[149] S. M. Jefferies, K. J. Schulze, C. L. Matson, K. Stoltenberg, and E. K. Hege, Blind deconvolution in optical diffusion tomography, Opt. Express, 10 (2002), pp. 46-53.
[150] T. K. Jensen and P. C. Hansen, Iterative regularization with minimum-residual methods., BIT, 47 (2007), pp. 103-120. · Zbl 1113.65037
[151] Z. Jia, Approximation accuracy of the Krylov subspaces for linear discrete ill-posed problems, J. Comput. Appl. Math., 374 (2020), art. 112786, https://doi.org/10.1016/j.cam.2020.112786. · Zbl 1434.65043
[152] Z. Jia, The low rank approximations and Ritz values in LSQR for linear discrete ill-posed problem, Inverse Problems, 36 (2020), art. 45013. · Zbl 07371359
[153] Z. Jia, Regularization properties of LSQR for linear discrete ill-posed problems in the multiple singular value case and best, near best and general low rank approximations, Inverse Problems, 36 (2020), art. 85009. · Zbl 1452.65075
[154] J. Jiang, J. Chung, and E. de Sturler, Hybrid projection methods with recycling for inverse problems, SIAM J. Sci. Comput., 43 (2021), pp. S146-S172, https://doi.org/10.1137/20M1349515. · Zbl 1490.65069
[155] M. Jiang, L. Xia, G. Shou, F. Liu, and S. Crozier, Two hybrid regularization frameworks for solving the electrocardiography inverse problem, Phys. Med. Biol., 53 (2008), pp. 5151-5164.
[156] J. S. Jørgensen, E. Ametova, G. Burca, G. Fardell, E. Papoutsellis, E. Pasca, K. Thielemans, M. Turner, R. Warr, W. R. B. Lionheart, and P. J. Withers, Core Imaging Library-Part I: A versatile Python framework for tomographic imaging, Phil. Trans. R. Soc. A, 379 (2021), https://doi.org/10.1098/rsta.2020.0192.
[157] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer Science & Business Media, 2006.
[158] K. Kan, J. G. Nagy, and L. Ruthotto, Avoiding the Double Descent Phenomenon of Random Feature Models Using Hybrid Regularization, preprint, https://arxiv.org/abs/2012.06667, 2020.
[159] L. Kaufman, A variable projection method for solving separable nonlinear least squares problems, BIT, 15 (1975), pp. 49-57. · Zbl 0307.65019
[160] D. Kazantsev, E. Pasca, M. J. Turner, and P. J. Withers, CCPi-Regularisation toolkit for computed tomographic image reconstruction with proximal splitting algorithms, SoftwareX, 9 (2019), pp. 317-323.
[161] M. E. Kilmer, P. C. Hansen, and M. I. Espan͂ol, A projection-based approach to general-form Tikhonov regularization, SIAM J. Sci. Comput., 29 (2007), pp. 315-330, https://doi.org/10.1137/050645592. · Zbl 1140.65030
[162] M. E. Kilmer and D. P. O’Leary, Choosing regularization parameters in iterative methods for ill-posed problems, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1204-1221, https://doi.org/10.1137/S0895479899345960. · Zbl 0983.65056
[163] N. Kuroiwa and T. Nodera, The adaptive augmented GMRES method for solving ill-posed problems, ANZIAM J., 50 (2008), pp. 654-667. · Zbl 1359.65049
[164] J. Lampe, L. Reichel, and H. Voss, Large-scale Tikhonov regularization via reduction by orthogonal projection, Linear Algebra Appl., 436 (2012), pp. 2845-2865. · Zbl 1241.65044
[165] A. Lanza, S. Morigi, L. Reichel, and F. Sgallari, A generalized Krylov subspace method for \(\ell_p-\ell_q\) minimization, SIAM J. Sci. Comput., 37 (2015), pp. S30-S50, https://doi.org/10.1137/140967982. · Zbl 1343.65077
[166] A. Lanza, S. Morigi, I. Selesnick, and F. Sgallari, Nonconvex nonsmooth optimization via convex-nonconvex majorization-minimization, Numer. Math., 136 (2017), pp. 343-381. · Zbl 1368.65087
[167] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, SIAM, Philadelphia, PA, 1995, https://doi.org/10.1137/1.9781611971217. · Zbl 0860.65029
[168] B. Lewis and L. Reichel, Arnoldi-Tikhonov regularization methods, J. Comput. Appl. Math., 226 (2009), pp. 92-102. · Zbl 1166.65016
[169] R.-C. Li and Q. Ye, A Krylov subspace method for quadratic matrix polynomials with application to constrained least squares problems, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 405-428, https://doi.org/10.1137/S0895479802409390. · Zbl 1050.65038
[170] J. L. Mead and R. A. Renaut, A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems, Inverse Problems, 25 (2008), art. 025002. · Zbl 1163.65019
[171] S. Morigi, L. Reichel, and F. Sgallari, Orthogonal projection regularization operators, Numer. Algorithms, 44 (2007), pp. 99-114. · Zbl 1124.65043
[172] V. A. Morozov, On the solution of functional equations by the method of regularization, Soviet Math. Dokl., 7 (1966), pp. 414-417. · Zbl 0187.12203
[173] J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, SIAM, Philadelphia, PA, 2012, https://doi.org/10.1137/1.9781611972344. · Zbl 1262.65124
[174] J. Nagy, K. Palmer, and L. Perrone, Iterative methods for image deblurring: A MATLAB object oriented approach, Numer. Algorithms, 36 (2004), pp. 73-93. · Zbl 1048.65039
[175] F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadelphia, PA, 2001, https://doi.org/10.1137/1.9780898719284. · Zbl 0973.92020
[176] A. S. Nemirovskii, The regularizing properties of the adjoint gradient method in ill-posed problems, USSR Comput. Math. Math. Phys., 26 (1986), pp. 7-16. · Zbl 0615.65056
[177] E. Newman, L. Ruthotto, J. Hart, and B. van Bloemen Waanders, Train like a (Var)Pro: Efficient training of neural networks with variable projection, SIAM J. Math. Data Sci., 3 (2021), pp. 1041-1066, https://doi.org/10.1137/20M1359511. · Zbl 1538.68049
[178] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444-1460, https://doi.org/10.1137/S1064827599362314. · Zbl 0980.65030
[179] P. Novati, Some properties of the Arnoldi-based methods for linear ill-posed problems, SIAM J. Matrix Anal. Appl., 55 (2017), pp. 1437-1455, https://doi.org/10.1137/16M106399X. · Zbl 1367.65084
[180] P. Novati, A convergence result for some Krylov-Tikhonov methods in Hilbert spaces, Numer. Funct. Anal. Optim., 39 (2018), pp. 655-666. · Zbl 1392.65068
[181] P. Novati, M. Redivo-Zaglia, and M. R. Russo, Preconditioning linear systems via matrix function evaluation, Appl. Numer. Math., 62 (2012), pp. 2063-2077.
[182] D. P. O’Leary, Robust regression computation using iteratively reweighted least squares, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 466-480, https://doi.org/10.1137/0611032. · Zbl 0704.65027
[183] D. P. O’Leary, Scientific Computing with Case Studies, SIAM, Philadelphia, PA, 2009, https://doi.org/10.1137/9780898717723. · Zbl 1181.65002
[184] D. P. O’Leary and B. W. Rust, Variable projection for nonlinear least squares problems, Comput. Optim. Appl., 54 (2013), pp. 579-593. · Zbl 1271.90055
[185] D. P. O’Leary and J. A. Simmons, A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 474-489, https://doi.org/10.1137/0902037. · Zbl 0469.65089
[186] C. C. Paige and M. A. Saunders, Algorithm \textup583: LSQR: Sparse linear equations and least squares problems, ACM Trans. Math. Software, 8 (1982), pp. 195-209.
[187] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), pp. 43-71. · Zbl 0478.65016
[188] E. Papoutsellis, E. Ametova, C. Delplancke, G. Fardell, J. S. Jørgensen, E. Pasca, M. Turner, R. Warr, W. R. B. Lionheart, and P. J. Withers, Core Imaging Library-Part II: Multichannel reconstruction for dynamic and spectral tomography, Phil. Trans. R. Soc. A, 379 (2021), art. 20200193, https://doi.org/10.1098/rsta.2020.0193.
[189] A. Parker and C. Fox, Sampling Gaussian distributions in Krylov spaces with conjugate gradients, SIAM J. Sci. Comput., 34 (2012), pp. B312-B334, https://doi.org/10.1137/110831404. · Zbl 1246.65057
[190] R. L. Parker, Geophysical Inverse Theory, Vol. 1, Princeton University Press, 1994. · Zbl 0812.35159
[191] T. Regińska, A regularization parameter in discrete ill-posed problems, SIAM J. Sci. Comput., 17 (1996), pp. 740-749, https://doi.org/10.1137/S1064827593252672. · Zbl 0865.65023
[192] L. Reichel and G. Rodriguez, Old and new parameter choice rules for discrete ill-posed problems, Numer. Algorithms, 63 (2013), pp. 65-87. · Zbl 1267.65045
[193] L. Reichel, F. Sgallari, and Q. Ye, Tikhonov regularization based on generalized Krylov subspace methods, Appl. Numer. Math., 62 (2012), pp. 1215-1228. · Zbl 1246.65068
[194] L. Reichel and A. Shyshkov, A new zero-finder for Tikhonov regularization, BIT, 48 (2008), pp. 627-643. · Zbl 1161.65029
[195] L. Reichel and U. O. Ugwu, Tensor Krylov subspace methods with an invertible linear transform product applied to image processing, Appl. Numer. Math., 166 (2021), pp. 186-207. · Zbl 1465.65035
[196] L. Reichel and U. O. Ugwu, The tensor Golub-Kahan-Tikhonov method applied to the solution of ill-posed problems with a t-product structure, Numer. Linear Algebra Appl., 29 (2022), art. e2412. · Zbl 07511593
[197] L. Reichel and Q. Ye, Simple square smoothing regularization operators, Electron. Trans. Numer. Anal., 33 (2009), pp. 63-83. · Zbl 1171.65033
[198] R. A. Renaut, M. Horst, Y. Wang, D. Cochran, and J. Hansen, Efficient estimation of regularization parameters via downsampling and the singular value expansion, BIT, 57 (2017), pp. 499-529. · Zbl 1367.65061
[199] R. A. Renaut, S. Vatankhah, and V. E. Ardestani, Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted GCV for projected systems, SIAM J. Sci. Comput., 39 (2017), pp. B221-B243, https://doi.org/10.1137/15M1037925. · Zbl 1360.65115
[200] P. Rodriguez and B. Wohlberg, An efficient algorithm for sparse representations with \(\ell^p\) data fidelity term, in Proceedings of the 4th IEEE Andean Technical Conference (ANDESCON), 2008.
[201] M. C. Roggemann and B. Welsh, Imaging Through Turbulence, CRC Press, Boca Raton, FL, 1996.
[202] B. W. Rust and D. P. O’Leary, Residual periodograms for choosing regularization parameters for ill-posed problems, Inverse Problems, 24 (2008), art. 034005. · Zbl 1137.62036
[203] L. Ruthotto, J. Chung, and M. Chung, Optimal experimental design for inverse problems with state constraints, SIAM J. Sci. Comput., 40 (2018), pp. B1080-B1100, https://doi.org/10.1137/17M1143733. · Zbl 1392.62232
[204] Y. Saad, On the rates of convergence of the Lanczos and the block-Lanczos methods, SIAM J. Numer. Anal., 17 (1980), pp. 687-706, https://doi.org/10.1137/0717059. · Zbl 0456.65016
[205] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14 (1993), pp. 461-469, https://doi.org/10.1137/0914028. · Zbl 0780.65022
[206] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2003, https://doi.org/10.1137/1.9780898718003. · Zbl 1031.65046
[207] M. D. Sacchi, Inversion of large ill-posed seismic imaging problems, in SEG Technical Program Expanded Abstracts 1998, Society of Exploration Geophysicists, 1998, pp. 1657-1660.
[208] A. K. Saibaba, A. Alexanderian, and I. C. F. Ipsen, Randomized matrix-free trace and log-determinant estimators, Numer. Math., 137 (2017), pp. 353-395. · Zbl 1378.65094
[209] A. K. Saibaba, J. Bardsley, D. A. Brown, and A. Alexanderian, Efficient marginalization-based MCMC methods for hierarchical Bayesian inverse problems, SIAM/ASA J. Uncertain. Quantif., 7 (2019), pp. 1105-1131, https://doi.org/10.1137/18M1220625. · Zbl 07118424
[210] A. K. Saibaba, J. Chung, and K. Petroske, Efficient Krylov subspace methods for uncertainty quantification in large Bayesian linear inverse problems, Numer. Linear Algebra Appl., 27 (2020), art. e2325. · Zbl 1538.65087
[211] A. K. Saibaba and P. K. Kitanidis, Fast computation of uncertainty quantification measures in the geostatistical approach to solve inverse problems, Adv. Water Resources, 82 (2015), pp. 124-138, https://doi.org/10.1016/j.advwatres.2015.04.012.
[212] M. Schmidt, G. Fung, and R. Rosales, Fast optimization methods for L \(1\) regularization: A comparative study and two new approaches, in European Conference on Machine Learning, Springer, 2007, pp. 286-297.
[213] M. K. Schneider and A. S. Willsky, A Krylov subspace method for covariance approximation and simulation of random processes and fields, Multidimens. Syst. Signal Process., 14 (2003), pp. 295-318. · Zbl 1056.93020
[214] J. K. Seo and E. J. Woo, Nonlinear Inverse Problems in Imaging, John Wiley & Sons, 2012.
[215] J. A. Simmons, Deconvolution for acoustic emission, Springer-Verlag, 1986, pp. 727-735, https://api.semanticscholar.org/CorpusID:117166242.
[216] H. D. Simon and H. Zha, Low-rank matrix approximation using the Lanczos bidiagonalization process with applications, SIAM J. Sci. Comput., 21 (2000), pp. 2257-2274, https://doi.org/10.1137/S1064827597327309. · Zbl 0962.65038
[217] V. Simoncini and D. B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1-59. · Zbl 1199.65112
[218] D. P. Simpson, Krylov Subspace Methods for Approximating Functions of Symmetric Positive Definite Matrices with Applications to Applied Statistics and Anomalous Diffusion, Ph.D. thesis, Queensland University of Technology, 2008.
[219] K. M. Soodhalter, A note on augmented unprojected Krylov subspace methods, Electron. Trans. Numer. Anal., 55 (2022), pp. 532-546. · Zbl 1491.65028
[220] K. M. Soodhalter, E. de Sturler, and M. E. Kilmer, A survey of subspace recycling iterative methods, GAMM-Mitt., 43 (2020), art. e202000016. · Zbl 1541.65019
[221] K. M. Soodhalter, D. B. Szyld, and F. Xue, Krylov subspace recycling for sequences of shifted linear systems, Appl. Numer. Math., 81 (2014), pp. 105-118. · Zbl 1291.65108
[222] A. Spantini, A. Solonen, T. Cui, J. Martin, L. Tenorio, and Y. Marzouk, Optimal low-rank approximations of Bayesian linear inverse problems, SIAM J. Sci. Comput., 37 (2015), pp. A2451-A2487, https://doi.org/10.1137/140977308. · Zbl 1325.62060
[223] A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), pp. 451-559. · Zbl 1242.65142
[224] L. Tenorio, An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems, SIAM, Philadelphia, PA, 2017, https://doi.org/10.1137/1.9781611974928. · Zbl 1435.65003
[225] A. N. Tikhonov, Regularization of incorrectly posed problems, Soviet Math. Dokl., 4 (1963), pp. 1624-1627. · Zbl 0183.11601
[226] A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4 (1963), pp. 1035-1038. · Zbl 0141.11001
[227] F. Toutounian and S. Karimi, Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides, Appl. Math. Comput., 178 (2006), pp. 452-460. · Zbl 1100.65039
[228] V. F. Turchin, Solution of Fredholm equations of the first kind in a statistical ensemble of smooth functions, USSR Comput. Math. Math. Phys., 7 (1967), pp. 79-101.
[229] W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, Fast and flexible X-ray tomography using the ASTRA toolbox, Opt. Express, 24 (2016), pp. 25129-25147, https://doi.org/10.1364/OE.24.025129.
[230] S. Vänskä, M. Lassas, and S. Siltanen, Statistical x-ray tomography using empirical Besov priors, Int. J. Tomogr. Stat., 11 (2009), pp. 3-32.
[231] U. Villa, N. Petra, and O. Ghattas, hIPPYlib: An extensible software framework for large-scale inverse problems governed by PDEs: Part I: Deterministic inversion and linearized Bayesian inference, ACM Trans. Math. Software, 47 (2021), art. 16, https://doi.org/10.1145/3428447. · Zbl 07467976
[232] B. F. Viloche and L. S. Borges, GKB-FP: An algorithm for large-scale discrete ill-posed problems, BIT, 50 (2010), pp. 481-507. · Zbl 1207.65039
[233] B. F. Viloche, M. Cunha, and L. S. Borges, Extension of GKB-FP algorithm to large-scale general-form Tikhonov regularization, Numer. Linear Algebra Appl., 21 (2014), pp. 316-339. · Zbl 1340.65071
[234] F. S. Viloche Bazán, L. S. Borges, and J. B. Francisco, On a generalization of Reginska’s parameter choice rule and its numerical realization in large-scale multi-parameter Tikhonov regularization, Appl. Math. Comput., 219 (2012), pp. 2100-2113. · Zbl 1293.65061
[235] C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, PA, 2002, https://doi.org/10.1137/1.9780898717570. · Zbl 1008.65103
[236] Y. Wang, Regularization for inverse models in remote sensing, Progr. Phys. Geography, 36 (2015), pp. 38-59.
[237] P. Wendykier and J. G. Nagy, Parallel Colt: A high-performance Java library for scientific computing and image processing, ACM Trans. Math. Software, 37 (2010), pp. 1-22. · Zbl 1364.65321
[238] B. Wohlberg and P. Rodriguez, An iteratively reweighted norm algorithm for minimization of total variation functionals, IEEE Signal Process. Lett., 14 (2007), pp. 948-951.
[239] S. J. Wright, R. D. Nowak, and M. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Signal Process., 57 (2009), pp. 2479-2493, https://doi.org/10.1109/icassp.2008.4518374. · Zbl 1391.94442
[240] Z. S. Yao and R. G. Roberts, A practical regularization for seismic tomography, Geophys. J. Internat., 138 (1999), pp. 293-299.
[241] H. Zha, Computing the generalized singular values/vectors of large sparse or structured matrix pairs, Numer. Math., 72 (1996), pp. 391-417. · Zbl 0856.65041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.