×

The Cox-Ingersoll-Ross process under volatility uncertainty. (English) Zbl 1539.60062

Summary: Due to the significance of the Cox-Ingersoll-Ross process in various areas of finance, a wide range of studies and investigations on this model have been carried out. In cases of ambiguity, we characterize it by applying the theory of \(G\)-expectation and the associated \(G\)-Brownian motion. In this paper, we establish the existence and uniqueness of the solution for the Cox-Ingersoll-Ross process in the presence of volatility uncertainty. In addition, certain properties of the solution are indicated, such as regularity and the strong Markov property. Furthermore, we compute some moments of the Cox-Ingersoll-Ross process by employing an extension of the nonlinear Feynman-Kac theorem.

MSC:

60G65 Nonlinear processes (e.g., \(G\)-Brownian motion, \(G\)-Lévy processes)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
91G30 Interest rates, asset pricing, etc. (stochastic models)

References:

[1] Akhtari, B.; Biagini, F.; Mazzon, A.; Oberpriller, K., Generalized Feynman-Kac Formula under volatility uncertainty. Stoch. Process. Appl. (2022), available at
[2] Bai, X.; Lin, Y., On the existence and uniqueness of solutions to stochastic differential equations driven by \(G\)-Brownian motion with integral-Lipschitz coefficients. Acta Math. Appl. Sin. Engl. Ser., 589-610 (2014) · Zbl 1314.60109
[3] Barles, G.; Souganidis, P. E., Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal., 3, 271-283 (1991) · Zbl 0729.65077
[4] Biagini, S.; Bouchard, B.; Kardaras, C.; Nutz, M., Robust fundamental theorem for continuous processes. Math. Finance, 4, 963-987 (2017) · Zbl 1411.91543
[5] Briani, M.; Chioma, C. L.; Natalini, R., Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numer. Math., 4, 607-646 (2004) · Zbl 1065.65145
[6] Brown, Stephen J.; Dybvig, Philip H., The empirical implications of the Cox, Ingersoll, Ross theory of the term structure of interest rates. J. Finance, Wiley Online Library, 3, 617-630 (1986)
[7] Caffarelli, L. A.; Cabré, X., Fully nonlinear elliptic equations. Am. Math. Soc. (1995) · Zbl 0834.35002
[8] Cox, J. C.; Ingersoll, J. E.; Ross, S. A., An intertemporal general equilibrium model of asset prices. Econometrica, 363-384 (1985) · Zbl 0576.90006
[9] Cox, J. C.; Ingersoll, J. E.; Ross, S. A., A theory of the term structure of interest rates. Econometrica, 2, 385-407 (1985) · Zbl 1274.91447
[10] Crandall, M.; Ishii, H.; Lions, P. L., User’s guide to the viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc., 1-67 (1992) · Zbl 0755.35015
[11] Deelstra, G.; Delbaen, F., Existence of solutions of stochastic differential equations related to the Bessel process (1994), Dept. Mathematics, ETH: Dept. Mathematics, ETH Zürich, Switzerland, Working paper
[12] Denis, L.; Hu, M.; Peng, S., Function spaces and capacity related to a sublinear expectation: application to \(G\)-Brownian motion paths. Potential Anal., 139-161 (2011) · Zbl 1225.60057
[13] Epstein, L.; Ji, S., Ambiguous volatility and asset pricing in continuous time. Rev. Financ. Stud., 7, 1740-1786 (2013)
[14] Epstein, L.; Ji, S., Ambiguous volatility, possibility and utility in continuous time. J. Math. Econ., 269-282 (2014) · Zbl 1284.91148
[15] Fadina, T.; Neufeld, A.; Schmidt, T., Affine processes under parameter uncertainty. Probab. Uncertain. Quant. Risk, 1, 1-35 (2019) · Zbl 1443.91309
[16] Gao, F., Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian. Stoch. Process. Appl., 3356-3382 (2009) · Zbl 1176.60043
[17] Gyöngy, I.; Rásonyi, M., A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch. Process. Appl., 2189-2200 (2011) · Zbl 1226.60095
[18] Hölzermann, J., The Hull-White model under volatility uncertainty. Quant. Finance, 11, 1921-1933 (2021)
[19] Hölzermann, J., Pricing interest rate derivatives under volatility uncertainty. Ann. Oper. Res., 1-30 (2022)
[20] Hölzermann, J., Term structure modeling under volatility uncertainty. Math. Financ. Econ., 317-343 (2022) · Zbl 1484.91496
[21] Hu, M.; Ji, X.; Liu, G., On the strong Markov property for stochastic differential equations driven by G-Brownian motion. Stoch. Process. Appl., 417-453 (2021)
[22] Hu, M.; Ji, S.; Peng, S.; Song, Y., Backward stochastic differential equations driven by G-Brownian motion. Stoch. Process. Appl., 1, 759-784 (2014) · Zbl 1300.60074
[23] Hu, M.; Ji, S.; Peng, S.; Song, Y., Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion. Stoch. Process. Appl., 2, 1170-1195 (2014) · Zbl 1300.60075
[24] Hu, M.; Wang, F.; Zheng, G., Quasi-continuous random variables and processes under the \(G\)-expectation framework. Stoch. Process. Appl., 8, 2367-2387 (2016) · Zbl 1343.60037
[25] Karatzas, I.; Shreve, S. E., Brownian Motion and Stochastic Calculus (1988), Springer: Springer New York · Zbl 0638.60065
[26] Katzourakis, Nikos, An Introduction to Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in \(L^\infty (2014)\), Springer · Zbl 1326.35006
[27] Knight, F. H., Risk, Uncertainty and Profit, vol. 31 (1921), Houghton Mifflin
[28] Lin, Q., Some properties of stochastic differential equations driven by the G-Brownian motion. Acta Math. Sin. Engl. Ser., 5, 923-942 (2013) · Zbl 1274.60184
[29] Nutz, M.; Van Handel, R., Constructing sublinear expectations on path space. Stoch. Process. Appl., 8, 3100-3121 (2013) · Zbl 1285.93104
[30] Peng, S., \(G\)-Brownian motion and dynamic risk measure under volatility uncertainty (2007)
[31] Peng, S., Nonlinear Expectations and Stochastic Calculus Under Uncertainty: With Robust CLT and G-Brownian Motion. Probability Theory and Stochastic Modelling (2019), Springer · Zbl 1427.60004
[32] Song, Y., Properties of hitting times for \(G\)-martingales and their applications. Stoch. Process. Appl., 8, 1770-1784 (2011) · Zbl 1231.60054
[33] Souganidis, P. E., Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Differ. Equ., 1, 1-43 (1985) · Zbl 0536.70020
[34] Wang, L., On the regularity of fully nonlinear parabolic equations: II. Commun. Pure Appl. Math., 141-178 (1992) · Zbl 0774.35042
[35] Yamada, T., Sur une construction des solutions d’équations différentielles stochastiques dans le cas non-Lipschitzien, 114-131 · Zbl 0382.60062
[36] Yang, J.; Zhao, W., Numerical simulations for G-Brownian motion. Front. Math. China, 1625-1643 (2016) · Zbl 1348.65011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.