×

Convergence of the integral fluctuation theorem estimator for nonequilibrium Markov systems. (English) Zbl 1539.60024

Summary: The integral fluctuation theorem (IFT) for entropy production is among the few equalities that are known to be valid for physical systems arbitrarily driven far from equilibrium. Microscopically, it can be understood as an inherent symmetry for the fluctuating entropy production rate implying the second law of thermodynamics. Here, we examine an IFT statistical estimator based on regular sampling and discuss its limitations for nonequilibrium systems, when sampling rare events becomes pivotal. Furthermore, via a large deviation study, we discuss a method to carefully setup an experiment in the parameter region where the IFT estimator safely converges and also show how to improve the convergence region for Markov chains with finite correlation time. We corroborate our arguments with two illustrative examples.
{© 2023 The Author(s). Published on behalf of SISSA Medialab srl by IOP Publishing Ltd}

MSC:

60F10 Large deviations
62M05 Markov processes: estimation; hidden Markov models
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
62G20 Asymptotic properties of nonparametric inference
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)

References:

[1] Evans, D. J.; Cohen, E. G D.; Morriss, G. P., Probability of second law violations in shearing steady states, Phys. Rev. Lett., 71, 2401-4 (1993) · Zbl 0966.82507 · doi:10.1103/PhysRevLett.71.2401
[2] Evans, D. J.; Searles, D. J., Equilibrium microstates which generate second law violating steady states, Phys. Rev. E, 50, 1645-8 (1994) · doi:10.1103/PhysRevE.50.1645
[3] Gallavotti, G.; Cohen, E. G D., Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett., 74, 2694-7 (1995) · doi:10.1103/PhysRevLett.74.2694
[4] Gallavotti, G.; Cohen, E. G D., Dynamical ensemble in a stationary state, J. Stat. Phys., 80, 931-70 (1995) · Zbl 1081.82580 · doi:10.1007/BF02179860
[5] Tasaki, H., Statistical mechanical derivation of the second law of thermodynamics (2000)
[6] Crooks, G. E., Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems, J. Stat. Phys., 90, 1481-7 (1998) · Zbl 0946.82029 · doi:10.1023/A:1023208217925
[7] Crooks, G. E., Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E, 60, 2721-6 (1999) · doi:10.1103/PhysRevE.60.2721
[8] Collin, D.; Ritort, F.; Jarzynski, C.; Smith, S. B.; Tinoco, I. Jr; Bustamante, C., Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies, Nature, 437, 231-4 (2005) · doi:10.1038/nature04061
[9] Esposito, M.; Lindenberg, K.; Van den Broeck, C., Entropy production as correlation between system and reservoir, New J. Phys., 12 (2010) · Zbl 1263.82032 · doi:10.1088/1367-2630/12/1/013013
[10] Campisi, M.; Hänggi, P., Fluctuation, dissipation and the arrow of time, Entropy, 13, 2024-35 (2011) · Zbl 1301.81009 · doi:10.3390/e13122024
[11] Lebowitz, J. L.; Spohn, H., A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics, J. Stat. Phys., 95, 333-65 (1999) · Zbl 0934.60090 · doi:10.1023/A:1004589714161
[12] Barato, A. C.; Chetrite, R., A formal view on level 2.5 large deviations and fluctuation relations, J. Stat. Phys., 160, 1154-72 (2015) · Zbl 1327.82045 · doi:10.1007/s10955-015-1283-0
[13] This is given by applying the probability propagator of the process onto the initial distribution of the forward process.
[14] It is connected with the Jarzynski identities \(####\) ] and \(####\) ], respectively for the statistics of work \(####\) done by the system and for the heat exchanged \(####\) between two bodies kept at different temperatures (β represents the inverse temperature).
[15] Hummer, G.; Szabo, A., Free energy reconstruction from nonequilibrium single-molecule pulling experiments, Proc. Natl Acad. Sci. USA, 98, 3658-61 (2001) · doi:10.1073/pnas.071034098
[16] Liphardt, J.; Dumont, S.; Smith, S. B.; Tinoco, I. Jr; Bustamante, C., Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality, Science, 296, 1832-5 (2002) · doi:10.1126/science.1071152
[17] Douarche, F.; Ciliberto, S.; Petrosyan, A.; Rabbiosi, I., An experimental test of the Jarzynski equality in a mechanical experiment, Europhys. Lett., 70, 593 (2005) · doi:10.1209/epl/i2005-10024-4
[18] Harris, N. C.; Song, Y.; Kiang, C-H, Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski’s equality, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.068101
[19] Hummer, G.; Szabo, A., Free energy profiles from single-molecule pulling experiments, Proc. Natl Acad. Sci. USA, 107, 21441-6 (2010) · doi:10.1073/pnas.1015661107
[20] Saira, O-P; Yoon, Y.; Tanttu, T.; Möttönen, M.; Averin, D. V.; Pekola, J. P., Test of the Jarzynski and Crooks fluctuation relations in an electronic system, Phys. Rev. Lett., 109 (2012) · doi:10.1103/PhysRevLett.109.180601
[21] Gore, J.; Ritort, F.; Bustamante, C., Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements, Proc. Natl Acad. Sci. USA, 100, 12564-9 (2003) · Zbl 1063.82030 · doi:10.1073/pnas.1635159100
[22] Jarzynski, C., Rare events and the convergence of exponentially averaged work values, Phys. Rev. E, 73 (2006) · doi:10.1103/PhysRevE.73.046105
[23] Tietz, C.; Schuler, S.; Speck, T.; Seifert, U.; Wrachtrup, J., Measurement of stochastic entropy production, Phys. Rev. Lett., 97 (2006) · doi:10.1103/PhysRevLett.97.050602
[24] Speck, T.; Blickle, V.; Bechinger, C.; Seifert, U., Distribution of entropy production for a colloidal particle in a nonequilibrium steady state, Europhys. Lett., 79 (2007) · Zbl 1228.82051 · doi:10.1209/0295-5075/79/30002
[25] Kim, S.; Kim, Y. W.; Talkner, P.; Yi, J., Comparison of free-energy estimators and their dependence on dissipated work, Phys. Rev. E, 86 (2012) · doi:10.1103/PhysRevE.86.041130
[26] Suárez, A.; Silbey, R.; Oppenheim, I., Phase transition in the Jarzynski estimator of free energy differences, Phys. Rev. E, 85 (2012) · doi:10.1103/PhysRevE.85.051108
[27] Yunger Halpern, N.; Jarzynski, C., Number of trials required to estimate a free-energy difference using fluctuation relations, Phys. Rev. E, 93 (2016) · doi:10.1103/PhysRevE.93.052144
[28] Hoang, D-T; Prasanna Venkatesh, B.; Han, S.; Jo, J.; Watanabe, G.; Choi, M-S, Scaling law for irreversible entropy production in critical systems, Sci. Rep., 6 (2016) · doi:10.1038/srep27603
[29] Murashita, Y.; Funo, K.; Ueda, M., Nonequilibrium equalities in absolutely irreversible processes, Phys. Rev. E, 90 (2014) · doi:10.1103/PhysRevE.90.042110
[30] Rohwer, C. M.; Angeletti, F.; Touchette, H., Convergence of large-deviation estimators, Phys. Rev. E, 92 (2015) · doi:10.1103/PhysRevE.92.052104
[31] Duffy, K.; Metcalfe, A. P., The large deviations of estimating rate functions, J. Appl. Probab., 42, 267-74 (2005) · Zbl 1077.60028 · doi:10.1239/jap/1110381386
[32] Sokal, A., Monte Carlo methods in statistical mechanics: foundations and new algorithms, Functional Integration, pp 131-92 (1997), Boston, MA: Springer, Boston, MA · Zbl 0890.65006
[33] This is to avoid a heavier (more technical) presentation of the results, as also done in the seminal paper of Crooks []
[34] Jarzynski, C., Nonequilibrium equality for free energy differences, Phys. Rev. Lett., 78, 2690-3 (1997) · doi:10.1103/PhysRevLett.78.2690
[35] den Hollander, F., Large Deviations (2000), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0949.60001
[36] Touchette, H., The large deviation approach to statistical mechanics, Phys. Rep., 478, 1-69 (2009) · doi:10.1016/j.physrep.2009.05.002
[37] Dembo, A.; Zeitouni, O., Large Deviations Techniques and Applications (Stochastic Modelling and Applied Probability vol 38) (2010), Berlin: Springer, Berlin · Zbl 1177.60035
[38] Touchette, H., Introduction to dynamical large deviations of Markov processes, Physica A, 504, 5-19 (2018) · Zbl 1514.82108 · doi:10.1016/j.physa.2017.10.046
[39] Carugno, G.; Vivo, P.; Coghi, F., Graph-combinatorial approach for large deviations of Markov chains, J. Phys. A: Math. Theor., 55 (2022) · Zbl 1507.60093 · doi:10.1088/1751-8121/ac79e6
[40] Under the Laplace approximation, the Euler-Lagrange equation () is obtained by making the derivative of the exponent in the right-hand-side of equation () with respect to \(####\).
[41] The mathematical definition of mixing is rather technical. We refer to [] for further details.
[42] We also remark that having a finite correlation time does not imply that the underlying process is time reversible; it is indeed possible to have non-equilibrium systems that have finite correlation times. We show an example in the following.
[43] Cramér, H., Sur un nouveau théorème-limite de la théorie des probabilités, Actualités Scientifiques et Industrielles, vol 736, pp 2-23 (1938), Paris: Hermann & Cie, Paris · JFM 64.0529.01
[44] Cramér, H.; Touchette, H., On a new limit theorem in probability theory (translation of ‘Sur un nouveau théorème-limite de la théorie des probabilités’) (2018)
[45] Wood, R. H.; Mühlbauer, W. C F.; Thompson, P. T., Systematic errors in free energy perturbation calculations due to a finite sample of configuration space: sample-size hysteresis, J. Phys. Chem., 95, 6670-5 (1991) · doi:10.1021/j100170a054
[46] Zuckerman, D. M.; Woolf, T. B., Theory of a systematic computational error in free energy differences, Phys. Rev. Lett., 89 (2002) · doi:10.1103/PhysRevLett.89.180602
[47] Zuckerman, D. M.; Woolf, T. B., Overcoming finite-sampling errors in fast-switching free-energy estimates: extrapolative analysis of a molecular system, Chem. Phys. Lett., 351, 445-53 (2002) · doi:10.1016/S0009-2614(01)01397-5
[48] Palassini, M.; Ritort, F., Improving free-energy estimates from unidirectional work measurements: theory and experiment, Phys. Rev. Lett., 107 (2011) · doi:10.1103/PhysRevLett.107.060601
[49] Carugno, G.; Vivo, P.; Coghi, F., Delocalization-localization dynamical phase transition of random walks on graphs, Phys. Rev. E, 107 (2023)
[50] Levin, D. A.; Peres, Y., Markov Chains and Mixing Times (2017), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1390.60001
[51] Kundu, A.; Sabhapandit, S.; Dhar, A., Application of importance sampling to the computation of large deviations in nonequilibrium processes, Phys. Rev. E, 83 (2011) · doi:10.1103/PhysRevE.83.031119
[52] Ray, U.; Chan, G. K L.; Limmer, D. T., Importance sampling large deviations in nonequilibrium steady states. I, J. Chem. Phys., 148 (2018) · doi:10.1063/1.5003151
[53] Coghi, F.; Touchette, H., Adaptive power method for estimating large deviations in Markov chains, Phys. Rev., 107 (2023)
[54] Del Moral, P., Feynman-Kac Formulae (Probability and Its Applications) (2004), New York: Springer, New York · Zbl 1130.60003
[55] Giardinà, C.; Kurchan, J.; Peliti, L., Direct evaluation of large-deviation functions, Phys. Rev. Lett., 96 (2006) · doi:10.1103/PhysRevLett.96.120603
[56] Lecomte, V.; Tailleur, J., A numerical approach to large deviations in continuous time, J. Stat. Mech. (2007) · doi:10.1088/1742-5468/2007/03/P03004
[57] Cérou, F.; Guyader, A., Adaptive multilevel splitting for rare event analysis, Stoch. Anal. Appl., 25, 417-43 (2007) · Zbl 1220.65009 · doi:10.1080/07362990601139628
[58] Dean, T.; Dupuis, P., Splitting for rare event simulation: a large deviation approach to design and analysis, Stoch. Process. Appl., 119, 562-87 (2009) · Zbl 1157.60019 · doi:10.1016/j.spa.2008.02.017
[59] Rose, D. C.; Mair, J. F.; Garrahan, J. P., A reinforcement learning approach to rare trajectory sampling, New J. Phys., 23 (2021) · doi:10.1088/1367-2630/abd7bd
[60] Yan, J.; Touchette, H.; Rotskoff, G. M., Learning nonequilibrium control forces to characterize dynamical phase transitions, Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.024115
[61] Buffoni, L.; Campisi, M., Spontaneous fluctuation-symmetry breaking and the Landauer principle, J. Stat. Phys., 186, 1-12 (2022) · Zbl 1489.82050 · doi:10.1007/s10955-022-02877-8
[62] Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E., Experimental verification of Landauer’s principle linking information and thermodynamics, Nature, 483, 187-9 (2012) · doi:10.1038/nature10872
[63] Das, M., Capturing the Landauer bound through the application of a detailed Jarzynski equality for entropic memory erasure, Phys. Rev. E, 90 (2014) · doi:10.1103/PhysRevE.90.062120
[64] Dago, S.; Pereda, J.; Barros, N.; Ciliberto, S.; Bellon, L., Information and thermodynamics: fast and precise approach to Landauer’s bound in an underdamped micromechanical oscillator, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.170601
[65] Junier, I.; Mossa, A.; Manosas, M.; Ritort, F., Recovery of free energy branches in single molecule experiments, Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.070602
[66] Alemany, A.; Mossa, A.; Junier, I.; Ritort, F., Experimental free-energy measurements of kinetic molecular states using fluctuation theorems, Nat. Phys., 8, 688-94 (2012) · doi:10.1038/nphys2375
[67] Jarzynski, C.; Wójcik, D. K., Classical and quantum fluctuation theorems for heat exchange, Phys. Rev. Lett., 92 (2004) · doi:10.1103/PhysRevLett.92.230602
[68] Arnold, V. I., Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics vol 60) (1989), New York: Springer, New York · Zbl 0692.70003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.