×

Finitely additive functions in measure theory and applications. (English) Zbl 1539.47041

Summary: In this paper, we consider, and make precise, a certain extension of the Radon-Nikodym derivative operator, to functions which are additive, but not necessarily sigma-additive, on a subset of a given sigma-algebra. We give applications to probability theory; in particular, to the study of \(\mu\)-Brownian motion, to stochastic calculus via generalized Itô-integrals, and their adjoints (in the form of generalized stochastic derivatives), to systems of transition probability operators indexed by families of measures \(\mu\), and to adjoints of composition operators.

MSC:

47B32 Linear operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces)
60G20 Generalized stochastic processes
60G15 Gaussian processes
60H05 Stochastic integrals
60J60 Diffusion processes
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)

References:

[1] S. Albeverio, L. Nizhnik, A Schrödinger operator with a \(\delta'\)-interaction on a Cantor set and Krein-Feller operators, Math. Nachr. 279 (2006), no. 5-6, 467-476. https://doi.org/10.1002/mana.200310371 · Zbl 1105.47039
[2] D. Alpay, On linear combination of positive functions, associated reproducing kernel spaces and a non hermitian Schur algorithm, Arch. Math. (Basel) 58 (1992), 174-182. https://doi.org/10.1007/BF01191883 · Zbl 0761.46014
[3] D. Alpay, A theorem on reproducing kernel Hilbert spaces of pairs, Rocky Mountain J. Math. 22 (1992), 1243-1258. https://doi.org/10.1216/rmjm/1181072652 · Zbl 0808.46034
[4] D. Alpay, P. Jorgensen, New characterizations of reproducing kernel Hilbert spaces and applications to metric geometry, Opuscula Math. 41 (2021), no. 3, 283-300. https://doi.org/10.7494/OpMath.2021.41.3.283 · Zbl 1470.46046
[5] D. Alpay, P. Jorgensen, mu-Brownian motion, dualities, diffusions, transforms, and reproducing kernel spaces, J. Theoret. Probab. 35 (2022), no. 4, 2757-2783. https://doi.org/10.1007/s10959-021-01146-w · Zbl 1502.60113
[6] D. Alpay, P. Jorgensen, D. Levanony, On the equivalence of probability spaces, J. Theoret. Probab. 30 (2017), no. 3, 813-841. · Zbl 1388.60081
[7] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404. https://doi.org/10.2307/1990404 · Zbl 0037.20701
[8] N. Aronszajn, Quadratic forms on vector spaces, Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1960, 29-87. · Zbl 0137.31801
[9] S.D. Chatterji, Les martingales et leurs applications analytiques, [in:] École d’Été de Probabilités: Processus Stochastiques (Saint Flour, 1971), Lecture Notes in Math., vol. 307, Springer Verlag, 1973, 27-164. https://doi.org/10.1007/BFb0059708
[10] H. Dym, H.P. McKean, Gaussian Processes, Function Theory and the Inverse Spectral Problem, Probability and Mathematical Statistics, vol. 31, Academic Press, New York-London, 1976. · Zbl 0327.60029
[11] W. Feller, On boundaries defined by stochastic matrices, Proc. Sympos. Appl. Math. 7 (1957), 35-40. · Zbl 0168.38803
[12] U. Freiberg, Refinement of the spectral asymptotics of generalized Krein Feller operators, Forum Math. 23 (2011), no. 2, 427-445. https://doi.org/10.1515/FORM.2011.017 · Zbl 1211.35211
[13] T. Hida, White noise analysis and applications in random fields, [in:] Dirichlet forms and stochastic processes (Beijing, 1993), de Gruyter, Berlin, 1995, 185-189. · Zbl 0844.60018
[14] K. Itô, Stochastic Processes, Springer-Verlag, Berlin, 2004.
[15] P. Jorgensen, F. Tian, Reproducing kernels and choices of associated feature spaces, in the form of \(L^2\)-spaces, J. Math. Anal. Appl. 505 (2022), no. 2, Article no. 125535. https://doi.org/10.1016/j.jmaa.2021.125535 · Zbl 1493.47032
[16] L.A. Minorics, Spectral asymptotics for Krein-Feller operators with respect to \(V\)-variable Cantor measures, Forum Math. 32 (2020), no. 1, 121-138. https://doi.org/10.1515/forum-2018-0188 · Zbl 1435.28013
[17] E. Nelson, Topics in Dynamics I: Flows, Mathematical Notes, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1969. · Zbl 0197.10702
[18] E. Nelson, Stochastic mechanics of particles and fields, [in:] Quantum Interaction, Lecture Notes in Comput. Sci., vol. 8369, Springer, Heidelberg, 2014, 1-5.
[19] J. Neveu, Processus aléatoires gaussiens, Number 34 in Séminaires de Mathématiques Supérieures, Les Presses de l’Université de Montréal, 1968.
[20] F. Riesz, Untersuchungen über Systeme integrierbarer Funkionen, Math. Ann. 69 (1910), 449-497. https://doi.org/10.1007/BF01457637 · JFM 41.0383.01
[21] L. Schwartz, Probabilités cylindriques et fonctions aléatoires, [in:] Séminaire Laurent Schwartz 1969-1970: Applications radonifiantes, Exp. No. 6, École Polytechnique, 1970, 1-8. · Zbl 0195.13003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.