×

An algebraic treatment of the Pastro polynomials on the real line. (English) Zbl 1539.39004

The authors study properties of Pastro polynomials on the real line, by introducing three \(q\)-difference operators that play a role similar to the pair of bispectral operators of the classical orthogonal polynomials, but for biorthogonal polynomials instead. The Pastro polynomials then arise as the polynomial solutions of generalized eigenvalue problems that are generated by these operators, which yields a description of their bispectral properties. As a result, the authors obtain a discrete biorthogonality relation on the real line for the Pastro polynomials.

MSC:

39A13 Difference equations, scaling (\(q\)-differences)
39A70 Difference operators
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
05A30 \(q\)-calculus and related topics

References:

[1] Al-Salam, Waleed A., A \(q\)-beta integral on the unit circle and some biorthogonal rational functions, Proc. Amer. Math. Soc., 553-561 (1994) · Zbl 0835.33011 · doi:10.2307/2160434
[2] Baseilhac, Pascal, The \(q\)-Heun operator of big \(q\)-Jacobi type and the \(q\)-Heun algebra, Ramanujan J., 367-380 (2020) · Zbl 1444.39007 · doi:10.1007/s11139-018-0106-8
[3] Baxter, Glen, Polynomials defined by a difference system, J. Math. Anal. Appl., 223-263 (1961) · Zbl 0116.35704 · doi:10.1016/0022-247X(61)90033-6
[4] Bussi\`ere, Isma\"{e}l, Bispectrality and biorthogonality of the rational functions of \(q\)-Hahn type, J. Math. Anal. Appl., Paper No. 126443, 17 pp. (2022) · Zbl 1519.33012 · doi:10.1016/j.jmaa.2022.126443
[5] Cramp\'{e}, Nicolas, The Askey-Wilson algebra and its avatars, J. Phys. A, Paper No. 063001, 32 pp. (2021) · Zbl 1519.81276 · doi:10.1088/1751-8121/abd783
[6] Gasper, George, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, xxvi+428 pp. (2004), Cambridge University Press, Cambridge · Zbl 1129.33005 · doi:10.1017/CBO9780511526251
[7] Gupta, Dharma P., Contiguous relations, continued fractions and orthogonality, Trans. Amer. Math. Soc., 769-808 (1998) · Zbl 0887.33013 · doi:10.1090/S0002-9947-98-01879-0
[8] Hendriksen, E., Orthogonal Laurent polynomials, Nederl. Akad. Wetensch. Indag. Math., 17-36 (1986) · Zbl 0604.33004
[9] Ismail, Mourad E. H., Generalized orthogonality and continued fractions, J. Approx. Theory, 1-40 (1995) · Zbl 0846.33005 · doi:10.1006/jath.1995.1106
[10] Ito, Tatsuro, Double affine Hecke algebras of rank 1 and the \(\mathbb{Z}_3\)-symmetric Askey-Wilson relations, SIGMA Symmetry Integrability Geom. Methods Appl., Paper 065, 9 pp. (2010) · Zbl 1220.33018 · doi:10.3842/SIGMA.2010.065
[11] Koekoek, Roelof, Hypergeometric orthogonal polynomials and their \(q\)-analogues, Springer Monographs in Mathematics, xx+578 pp. (2010), Springer-Verlag, Berlin · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[12] Mallick, K., Finite-dimensional representations of the quadratic algebra: applications to the exclusion process, J. Phys. A, 4513-4526 (1997) · Zbl 0939.81010 · doi:10.1088/0305-4470/30/13/008
[13] Pastro, P. I., Orthogonal polynomials and some \(q\)-beta integrals of Ramanujan, J. Math. Anal. Appl., 517-540 (1985) · Zbl 0582.33010 · doi:10.1016/0022-247X(85)90261-6
[14] Terwilliger, Paul, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl., 149-203 (2001) · Zbl 0980.05054 · doi:10.1016/S0024-3795(01)00242-7
[15] Tsujimoto, Satoshi, Tridiagonal representations of the \(q\)-oscillator algebra and Askey-Wilson polynomials, J. Phys. A, 235202, 15 pp. (2017) · Zbl 1368.81074 · doi:10.1088/1751-8121/aa6f3a
[16] Tsujimoto, Satoshi, An algebraic description of the bispectrality of the biorthogonal rational functions of Hahn type, Proc. Amer. Math. Soc., 715-728 (2021) · Zbl 1456.33011 · doi:10.1090/proc/15225
[17] L. Vinet, M. Zaimi, and A. Zhedanov, \(R_I\) biorthogonal polynomials of Hahn type, 2209.07433, 2021.
[18] Vinet, Luc, Spectral transformations of the Laurent biorthogonal polynomials. II. Pastro polynomials, Canad. Math. Bull., 337-345 (2001) · Zbl 1065.33011 · doi:10.4153/CMB-2001-034-3
[19] Vinet, Luc, A “missing” family of classical orthogonal polynomials, J. Phys. A, 085201, 16 pp. (2011) · Zbl 1222.33011 · doi:10.1088/1751-8113/44/8/085201
[20] Vinet, Luc, The Heun operator of Hahn-type, Proc. Amer. Math. Soc., 2987-2998 (2019) · Zbl 1429.33018 · doi:10.1090/proc/14425
[21] Vinet, Luc, A unified algebraic underpinning for the Hahn polynomials and rational functions, J. Math. Anal. Appl., Paper No. 124863, 33 pp. (2021) · Zbl 1459.33010 · doi:10.1016/j.jmaa.2020.124863
[22] Vinet, Luc, An algebraic treatment of the Askey biorthogonal polynomials on the unit circle, Forum Math. Sigma, Paper No. e68, 28 pp. (2021) · Zbl 1528.33016 · doi:10.1017/fms.2021.60
[23] P. B. Wiegmann and A. X. Zabrodin, Algebraization of difference eigenvalue equations related to \(U_q(sl_2)\), Nucl. Phys. B 451 (1995), 699-724. · Zbl 0925.39003
[24] Wilson, James A., Orthogonal functions from Gram determinants, SIAM J. Math. Anal., 1147-1155 (1991) · Zbl 0742.33008 · doi:10.1137/0522074
[25] Zhedanov, A. S., “Hidden symmetry” of Askey-Wilson polynomials, Theoret. and Math. Phys.. Teoret. Mat. Fiz., 190-204 (1991) · Zbl 0782.33012 · doi:10.1007/BF01015906
[26] Zhedanov, Alexei, The “classical” Laurent biorthogonal polynomials, J. Comput. Appl. Math., 121-147 (1998) · Zbl 0932.33006 · doi:10.1016/S0377-0427(98)00118-6
[27] Zhedanov, Alexei, Biorthogonal rational functions and the generalized eigenvalue problem, J. Approx. Theory, 303-329 (1999) · Zbl 1058.42502 · doi:10.1006/jath.1999.3339
[28] Zhedanov, Alexei, On the polynomials orthogonal on regular polygons, J. Approx. Theory, 1-14 (1999) · Zbl 0932.33002 · doi:10.1006/jath.1996.3257
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.