×

The inverse problem of dipolar source identification from incomplete boundary measurements. (English) Zbl 1539.35293

Summary: We consider and combine two methods to solve the inverse problem of locating dipolar sources in a restricted domain from measurements of the Cauchy data on a part of the boundary for the Laplace equation. We begin by extending the boundary measurements, which are accessible only on a part of the boundary by solving an extremal bounded problem in an annulus. The inverse problem of source identification is then solved using the reciprocity gap concept applied to the completed data. In order to evaluate the effectiveness of source detection with regard to the expansion of the data, some numerical tests are provided.
© 2023 John Wiley & Sons, Ltd.

MSC:

35R30 Inverse problems for PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
Full Text: DOI

References:

[1] A.Ben Abda, F.Ben Hassen, J.Leblond, and M.Mahjoub, Sources recovery from boundary data: a model related to electroencephalography, Math. Comput. Modelling49 (2009), 2213-2223. · Zbl 1171.92327
[2] M.Andrle, F.Ben Belgacem, and A.El Badia, Identification of moving pointwise sources in an advection‐dispersion‐reaction equation, Inverse Probl.27 (2011), no. 2, 25007. · Zbl 1210.35280
[3] M.Andrle and A.El Badia, Identification of multiple moving pollution sources in surface waters or atmospheric media with boundary observations, Inverse Probl.28 (2012), no. 7, 75009. · Zbl 1247.35198
[4] A.Hamdi, Detection and identification of multiple unknown time‐dependent point sources occurring in 1D evolution transport equations, Inverse Probl. Sci. Eng.25 (2016), no. 4, 532-554. · Zbl 1359.65177
[5] A.Hamdi, Detection‐identification of multiple unknown time‐dependent point sources in a 2D transport equation: application to accidental pollution, Inverse Probl. Sci. Eng.25 (2017), no. 10, 1423-1447. · Zbl 1398.65234
[6] M.Anastasio, J.Zhang, D.Modgil, and P.La Riviere, Application of inverse source concepts to photoacoustic tomography, Inverse Probl.23 (2007), no. 6, 21-35. · Zbl 1125.92033
[7] C. E.Fear, S. C.Hagness, P. M.Meaney, M.Okoniewski, and M. A.Stuchly, Enhancing breast tumor detection with near‐field imaging, IEEE Microw. Mag.3 (2002), no. 1, 48-56.
[8] A.El Badia and T.Ha Duong, Some remarks on the problem of source identification from boundary measurements, Inverse Probl.14 (1998), no. 4, 883-91. · Zbl 0916.35135
[9] A.El Badia and T.Ha Duong, An inverse source problem in potential analysis, Inverse Probl.16 (2000), no. 3, 651-63. · Zbl 0963.35194
[10] N. T.Hariga, R.Bouhlila, and A.Ben Abda, Identification of aquifer point sources and partial boundary condition from partial overspecified boundary data, C. R. Geosci.340 (2008), 245-50.
[11] C. J. S.Alves, M. J.Colaco, V. M. A.Leitao, N. F. M.Martins, H. R. B.Orlande, and N. C.Roberty, Recovering the source term in a linear diffusion problem by the method of fundamental solutions, Inverse Probl. Sci. Eng.16 (2008), 1005-21. · Zbl 1159.65354
[12] C. J. S.Alves and N. C.Roberty, On the identification of star shape sources from boundary measurements using a reciprocity functional, Inverse Probl. Sci. Eng.17 (2009), 187-202. · Zbl 1166.65392
[13] F.Hettlich and W.Rundell, Iterative methods for the reconstruction of an inverse potential problem, Inverse Probl.12 (2009), no. 3, 251-66. · Zbl 0858.35134
[14] S.Acosta, S.Chow, J.Taylor, and V.Villamizar, On the multi‐frequency inverse source problem in heterogeneous media, Inverse Probl.28 (2012), no. 7, 75013. · Zbl 1248.35054
[15] C. J. S.Alves, N. F. M.Martins, and N. C.Roberty, Full identification of acoustic sources with multiple frequencies and boundary measurements, Inverse Probl. Imaging3 (2009), 275-94. · Zbl 1187.65124
[16] M.Bauer, S.Pursiainen, J.Vorwerk, H.Kostler, and C. H.Wolters, Comparison study for whitney (Raviart‐Thomas)‐type source models in finite‐element‐method‐based eeg forward modeling, IEEE Trans. Biomed. Eng.62 (2015), no. 11, 2648-2656.
[17] A.El Badia and M.Farah, Identification of dipole sources in an elliptic equation from boundary measurements, J. Inv. Ill‐Posed Probl.14 (2006), 331-353. · Zbl 1110.35102
[18] A.El Badia and M.Farah, A stable recovering of dipole sources from partial boundary measurements, Inverse Probl.26 (2010), no. 11, 115006. · Zbl 1204.35173
[19] S.Lew, D. D.Silva, M.Choe, P.Ellen Grant, Y.Okada, C. H.Wolters, and M. S.Hamalainen, Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model, Neuroimage76 (2013), 282-293.
[20] J.Vorwerk, J. H.Cho, S.Rampp, H.Hamer, T. T.Knosche, and C. H.Wolters, A guideline for head volume conductor modeling in EEG and MEG, Neuroimage15 (2014), 590-607.
[21] C. H.Wolters, A.Anwander, X.Tricoche, D.Weinstein, M. A.Koch, and M. S.Macleod, Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high‐resolution finite element modeling, NeuroImage30 (2006), 813-826.
[22] J.Hadamard, Lectures on Cauchy’s problem in linear partial differential equation, Vol. 15, Yale university press, 1953.
[23] V. A.Kozlov, V. G.Maz’ya, and A. V.Fomin, An iterative method for solving the cauchy problems for elliptic equations, Comput. Math. Phys.31 (1991), 45-52. · Zbl 0774.65069
[24] D.Lesnic, L.Elliott, and D. B.Ingham, An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation, Eng. Anal. Bound. Elements20 (1997), no. 2, 123-133.
[25] J.Baumeister and A.Leitao, On iterative methods for solving ill‐posed problems modeled by partial differential equations, J. Inverse Ill‐Posed Probl.9 (2001), no. 1, 13-29. · Zbl 0980.35166
[26] S.Andrieux, T.Baranger, and A.Ben Abda, Solving cauchy problems by minimizing an energy‐like functional, Inverse Probl.22 (2006), no. 1, 115-133. · Zbl 1089.35084
[27] F. B.Belgacem and E. lF. ekihH., On Cauchy’s problem : I. A variational Steklov‐Poincaré theory, Inverse Probl.21 (2005), no. 6, 1915. · Zbl 1112.35054
[28] M. M.Lavrentiev, Some improperly posed problems of mathematical physics, Vol. 11, Springer Science & Business Media, 2013.
[29] F. B.Belgacem, H.El Fekih, and F.Jelassi, The Lavrentiev regularization of the data completion problem, Inverse Probl.24 (2008), no. 4, 45009. · Zbl 1153.35399
[30] H. Y.Jin and Z. A.Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equ.260 (2016), no. 1, 162-196. · Zbl 1323.35001
[31] W.Lyu and Z. A.Wang, Global classical solutions for a class of reaction‐diffusion system with density‐suppressed motility, Electron. Res. Arch.30 (2022), 995-1015. · Zbl 1486.35260
[32] E.Shivanian, Completion of right‐hand side in the frame of inverse Cauchy problem of elliptic type equation through homogenization meshless collocation method, Appl. Numer. Math.156 (2020), 493-513. · Zbl 1465.65120
[33] R.Luo, Z.Peng, and J.Hu, On model identification based optimal control and it’s applications to multi‐agent learning and control, Mathematics11 (2023), no. 4, 906.
[34] Q.Zhong, S.Han, K.Shi, S.Zhong, and O. M.Kwon, Co‐design of adaptive memory event‐triggered mechanism and aperiodic intermittent controller for nonlinear networked control systems, IEEE Trans. Circ. Syst. II: Express Briefs69 (2022), no. 12, 4979-4983.
[35] C.Guo and J.Hu, Fixed‐time stabilization of high‐order uncertain nonlinear systems: output feedback control design and settling time analysis, J. Syst. Sci. Complex.36 (2023), 1351-1372. · Zbl 07903273
[36] H.Haddar and R.Mdimagh, Identification of small inclusions from multi static data using the reciprocity gap concept, Inverse Probl.28 (2012), no. 4, 45011. · Zbl 1241.78022
[37] M.Jaoua, J.Leblond, M.Mahjoub, and J. R.Partington, Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains, IMA J. Appl. Math.74 (2009), no. 4, 481-506. · Zbl 1231.35305
[38] D.Alpay, L.Baratchart, and J.Leblond, Some extremal problems linked with identification from partial frequency data, Proc. 10 Conf. Analyse Optimisation Systemes, Sophia‐Antipolis, Springer‐Verlag, LNCIS 185, 1992, pp. 563-573. · Zbl 0792.93022
[39] L.Baratchart and J.Leblond, Hardy approximation to
[( {l}^p \]\) functions on subsets of the circle with
[( 1\le p<\infty \]\), Construct. Approx.14 (1998), 41-56. · Zbl 0894.30023
[40] L.Baratchart, J.Leblond, and J. R.Partington, Hardy approximation to
[( {l}^{\infty } \]\) functions on subsets of the circle, Construct. Approx.12 (1996), 423-436. · Zbl 0853.30022
[41] I.Chalendar and J. R.Partington, Constrained approximation and invariant subspaces, J. Math. Anal. Appl.280 (2003), 176-187. · Zbl 1022.41015
[42] J.Leblond, M.Mahjoub, and J. R.Partington, Analytic extensions and cauchy‐type inverse problems on annular domains: stability results,J. Inv. Ill‐Posed Probl.14 (2006), no. 2, 189-204. · Zbl 1111.35121
[43] N.Torkhani. (1995). Contribution à l’identification fréquentielle robuste des systèmes dynamiques linéaires, Thèse de doctorat, Ecole Nationale des Ponts et Chaussées.
[44] S.Chaabane, M.Jaoua, and J.Leblond, Parameter identification for laplace equation and approximation in hardy classes, J. Inv. Ill‐Posed Probl.66 (2004), 367-383.
[45] M.Mahjoub. (2008). Approximation harmonique dans une couronne et applications à la résolution numérique de quelques problèmes inverses, Thèse de doctorat, Université de Tunis El Manar.
[46] L.Baratchart, A.Ben Abda, F.Ben Hassen, and J.Leblond, Recovery of pointwise sources or small inclusions in 2D domains and rational approximation, Inverse Probl.21 (2005), 51. · Zbl 1086.35121
[47] J.Leblond, C.Paduret, S.Rigat, and M.Zghal, Source localization in ellipsoids by the best meromorphic approximation in planar sections, Inverse Probl.24 (2008), 35017. · Zbl 1167.35052
[48] Y.Fischer, B.Marteau, and Y.Privat, Some inverse problems around the tokamak Tore Supra, Commun. Pure Appl. Anal.11 (2012), no. 6, 2327-2349. · Zbl 1267.30107
[49] A.Ben Abda, R.Mdimagh, and A.Saada, Identification of pointwise sources and small size flaws via the reciprocity gap principle; stability estimates, Int. J. Tomography Stat.4 (2006), no. S06, 24-45. · Zbl 1136.65104
[50] A.El Badia, Inverse source problem in an anisotropic medium by boundary measurements, Inverse Probl.21 (2005), no. 5, 1487-1506. · Zbl 1086.35133
[51] A.El Badia and T.Ha‐Duong, On an inverse source problem for the heat equation. Application to a pollution detection problem, J. Inv. Ill‐Posed Probl.10 (2002), no. 6, 585-599. · Zbl 1028.35164
[52] A.El Badia and T.Nara, An inverse source problem for Helmholtz’s equation from the cauchy data with a single wave number, Inverse Probl.27 (2011), no. 10, 105001. · Zbl 1231.35299
[53] D.Kandaswamy, T.Blu, and D.Van De Ville, Analytic sensing: noniterative retrieval of point sources from boundary measurements, SIAM J. Sci. Comput.31 (2009), 3179-3194. · Zbl 1203.65233
[54] R.Mdimagh, Recovery of dipolar sources and stability estimates, Filomat40 (2019), no. 8, 4095-4114. · Zbl 1499.65312
[55] R.Mdimagh and I.Ben Saad, Stability estimates for point sources identification problem using reciprocity gap concept via the Helmholtz equation, Appl. Math. Model.40 (2016), 7844-7861. · Zbl 1471.65181
[56] A.Ghanmi, R.Mdimagh, and I.Ben Saad, Identification of points sources via time fractional diffusion equation, Filomat32 (2018), no. 18, 6189-6201. · Zbl 1499.42027
[57] D.Colton and H.Haddar, An application of the reciprocity gap functional to inverse scattering theory, Inverse Probl.21 (2005), 383-398. · Zbl 1086.35129
[58] A.Batoul, E. lBadia, and A.El Hajj, Direct algorithm for multipolar sources reconstruction, J. Math. Anal. Appl.428 (2015), no. 1, 306-336. · Zbl 1325.65149
[59] A.El Badia and T.Nara, Inverse dipole source problem for time‐harmonic Maxwell equations: algebraic algorithm and Holder stability, Inverse Probl.29 (2013), no. 1, 15007. · Zbl 1266.78004
[60] P.Grisvard, Elliptic problems in nonsmooth domains, Pitman Advanced Pub. Program, Boston, 1985. · Zbl 0695.35060
[61] C.Pommerenke, Boundary behaviour of conformal maps, Springer‐ Verlag, 1991.
[62] G.Alessandrini, L.Del Piero, and L.Rondi, Stable determination of corrosion by a single electrostatic measurement, Inverse Probl.19 (2003), no. 4, 973-984. · Zbl 1050.35134
[63] P. L.Duren, Theory of
[( {h}^p \]\) spaces, Academic Press, New York, 1970. · Zbl 0215.20203
[64] J. B.Garnett, Bounded analytic functions, Academic Press, New York, 1981. · Zbl 0469.30024
[65] K.Hoffman, Banach spaces of analytic functions, Dover Publication, New York, 1988. · Zbl 0734.46033
[66] W.Rudin, Analytic functions of class
[( {H}^p \]\), Trans. Amer. Math. Soc.78 (1955), 46-66. · Zbl 0064.31203
[67] I.Chalendar and J. R.Partington, Approximation problems and representations of Hardy spaces in circular domains, Studia Math.136 (1999), 255-269. · Zbl 0952.30033
[68] D. E.Sarason, The
[( {H}^p \]\) spaces of an annulus, Mem. Amer. Math. Soc.56 (1965), 1-78. · Zbl 0127.07002
[69] H.Brézis, Analyse fonctionnelle, “Nauka” Sibirsk. Otdel., Novosibirsk, 1983. · Zbl 0511.46001
[70] S.Lang, Differential manifolds, Springer, Berlin, Heidelberg, New York, 1985. · Zbl 0551.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.