×

Uniqueness of solutions to the spectral hierarchy in kinetic wave turbulence theory. (English) Zbl 1539.35244

Summary: In [G. L. Eyink and Y.-K. Shi, Physica D 241, No. 18, 1487–1511 (2012; Zbl 1287.82022); S. Chibbaro et al., Physica D 362, 24–59 (2018; Zbl 1386.82051)], these authors, respectively, formally derived an infinite, coupled hierarchy of equations for the spectral correlation functions of a system of weakly interacting nonlinear dispersive waves with random phases in the standard kinetic limit. Analogously to the relationship between the Boltzmann hierarchy and Boltzmann equation, this spectral hierarchy admits a special class of factorized solutions, where each factor is a solution to the wave kinetic equation (WKE). A question left open by these works and highly relevant for the mathematical derivation of the WKE is whether solutions of the spectral hierarchy are unique, in particular whether factorized initial data necessarily lead to factorized solutions. In this article, we affirmatively answer this question in the case of 4-wave interactions by showing, for the first time, that this spectral hierarchy is well-posed in an appropriate function space. Our proof draws on work of T. Chen and N. Pavlović [Discrete Contin. Dyn. Syst. 27, No. 2, 715–739 (2010; Zbl 1190.35207)] for the Gross-Pitaevskii hierarchy in quantum many-body theory and of P. Germain et al. [J. Funct. Anal. 279, No. 4, Article ID 108570, 27 p. (2020; Zbl 1442.35287)] for the well-posedness of the WKE.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)

References:

[1] Hasselmann, K., On the non-linear energy transfer in a gravity-wave spectrum. I. General theory, J. Fluid Mech., 12, 481-500 (1962) · Zbl 0107.21402
[2] Hasselmann, K., On the non-linear energy transfer in a gravity wave spectrum. II. Conservation theorems; wave-particle analogy; irreversibility, J. Fluid Mech., 15, 273-281 (1963) · Zbl 0116.43401
[3] Hasselmann, K., On the non-linear energy transfer in a gravity-wave spectrum. III. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum, J. Fluid Mech., 15, 385-398 (1963) · Zbl 0126.23202
[4] Zakharov, V., Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid, Eur. J. Mech. B/Fluids, 18, 327-344 (1999), Three-Dimensional Aspects of Air-Sea Interaction · Zbl 0960.76014
[5] Falcon, E.; Laroche, C.; Fauve, S., Observation of gravity-capillary wave turbulence, Phys. Rev. Lett., 98, Article 094503 pp. (2007)
[6] Kolmakov, G. V.; McClintock, P. V.E.; Nazarenko, S. V., Wave turbulence in quantum fluids, Proc. Natl. Acad. Sci., 111, 4727-4734 (2014) · Zbl 1355.76089
[7] Peierls, R., Zur theorie der galvanomagnetischen effekte, Zeitschrift Für Physik, 53, 255-266 (1929) · JFM 55.0545.04
[8] Zakharov, V. E.; L’vov, V. S.; Falkovich, G., Kolmogorov Spectra of Turbulence I: Wave Turbulence (2012), Springer Science & Business Media · Zbl 0786.76002
[9] Frisch, U., Turbulence (1995), Cambridge University Press: Cambridge University Press Cambridge, The legacy of A. N. Kolmogorov · Zbl 0727.76064
[10] Newell, A. C.; Rumpf, B., Wave turbulence: a story far from over, in advances in wave turbulence, (Vol. 83 of World Sci. Ser. Nonlinear Sci. Ser. a Monogr. Treatises, World Sci. Publ. Hackensack, NJ (2013)), 1-51 · Zbl 1297.76088
[11] Nazarenko, S., Wave Turbulence, Vol. 825 of Lecture Notes in Physics (2011), Springer, Heidelberg · Zbl 1220.76006
[12] H. Spohn, On the Boltzmann equation for weakly nonlinear wave equations, in: Boltzmann’s legacy, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, pp. 145-159. · Zbl 1156.82312
[13] Buckmaster, T.; Germain, P.; Hani, Z.; Shatah, J., On the kinetic wave turbulence description for NLS, Quart. Appl. Math., 78, 261-275 (2020) · Zbl 1431.35164
[14] Lukkarinen, J.; Spohn, H., Weakly nonlinear Schrödinger equation with random initial data, Invent. Math., 183, 79-188 (2011) · Zbl 1235.76136
[15] Lukkarinen, J.; Spohn, H., Not to normal order—notes on the kinetic limit for weakly interacting quantum fluids, J. Stat. Phys., 134, 1133-1172 (2009) · Zbl 1169.82016
[16] T. Buckmaster, P. Germain, Z. Hani, J. Shatah, Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation, in: Inventiones mathematicae, 2021. · Zbl 1484.35345
[17] Collot, C.; Germain, P., On the derivation of the homogeneous kinetic wave equation (2019), arXiv preprint arXiv:1912.10368
[18] Collot, C.; Germain, P., Derivation of the homogeneous kinetic wave equation: longer time scales (2020), arXiv preprint arXiv:2007.03508
[19] Deng, Y.; Hani, Z., On the derivation of the wave kinetic equation for nls (2019), arXiv preprint arXiv:1912.09518
[20] Faou, E., Linearized wave turbulence convergence results for three-wave systems, Comm. Math. Phys., 378, 807-849 (2020) · Zbl 1446.76118
[21] Staffilani, G.; Tran, M.-B., On the wave turbulence theory for stochastic and random multidimensional kdv type equations (2021), arXiv preprint arXiv:2106.09819
[22] de Suzzoni, A.-S., Singularities in the weak turbulence regime for the quintic Schrödinger equation (2020), arXiv preprint arXiv:2010.14179
[23] Escobedo, M.; Velázquez, J. J.L., On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Amer. Math. Soc., 238, v+107 (2015) · Zbl 1329.35278
[24] Kierkels, A. H.M.; Velázquez, J. J.L., On the transfer of energy towards infinity in the theory of weak turbulence for the nonlinear Schrödinger equation, J. Stat. Phys., 159, 668-712 (2015) · Zbl 1331.35256
[25] Kierkels, A. H.M.; Velázquez, J. J.L., On self-similar solutions to a kinetic equation arising in weak turbulence theory for the nonlinear Schrödinger equation, J. Stat. Phys., 163, 1350-1393 (2016) · Zbl 1348.35237
[26] Germain, P.; Ionescu, A. D.; Tran, M.-B., Optimal local well-posedness theory for the kinetic wave equation, J. Funct. Anal., 279, Article 108570 pp. (2020), 28 · Zbl 1442.35287
[27] Chibbaro, S.; Dematteis, G.; Rondoni, L., 4-wave dynamics in kinetic wave turbulence, Physica D, 362, 24-59 (2018) · Zbl 1386.82051
[28] Chibbaro, S.; Dematteis, G.; Josserand, C.; Rondoni, L., Wave-turbulence theory of four-wave nonlinear interactions, Phys. Rev. E, 96, Article 021101 pp. (2017)
[29] Eyink, G. L.; Shi, Y.-K., Kinetic wave turbulence, Physica D, 241, 1487-1511 (2012) · Zbl 1287.82022
[30] Choi, Y.; Lvov, Y. V.; Nazarenko, S., Joint statistics of amplitudes and phases in wave turbulence, Physica D, 201, 121-149 (2005) · Zbl 1143.76451
[31] Jakobsen, P.; Newell, A. C., Invariant measures and entropy production in wave turbulence, J. Stat. Mech. Theory Exp., 2004, Article L10002 pp. (2004)
[32] Lanford III, O. E., Time evolution of large classical systems, (Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974). Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., Vol. 38 (1975)), 1-111 · Zbl 0329.70011
[33] O.E. Lanford III, On a derivation of the Boltzmann equation, in: International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), 1976, pp. 117-137. Astérisque, No. 40. · Zbl 0353.70020
[34] King, F. G., BBGKY HIERARCHY for POSITIVE POTENTIALS, ProQuest LLC, Ann Arbor, MI (1975), University of California, Berkeley, (Ph.D. thesis)
[35] Spohn, H., On the Vlasov hierarchy, Math. Methods Appl. Sci., 3, 445-455 (1981) · Zbl 0492.35067
[36] H. Spohn, Boltzmann hierarchy and Boltzmann equation, in: Kinetic theories and the Boltzmann equation (Montecatini, 1981), vol. 1048 of Lecture Notes in Math., Springer, Berlin, 1984, pp. 207-220. · Zbl 0559.76073
[37] Illner, R.; Pulvirenti, M., Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum, Comm. Math. Phys., 105, 189-203 (1986) · Zbl 0609.76083
[38] Gallagher, I.; Saint-Raymond, L.; Texier, B., (From Newton To Boltzmann: Hard Spheres and Short-Range Potentials. From Newton To Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics (2013), European Mathematical Society (EMS), Zürich) · Zbl 1315.82001
[39] Pulvirenti, M.; Saffirio, C.; Simonella, S., On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys., 26, Article 1450001 pp. (2014), 64 · Zbl 1296.82051
[40] Ampatzoglou, I.; Pavlovic, N., A rigorous derivation of a ternary boltzmann equation for a classical system of particles (2019), arXiv preprint arXiv:1903.04279
[41] Adami, R.; Bardos, C.; Golse, F.; Teta, A., Towards a rigorous derivation of the cubic NLSE in dimension one, Asymptot. Anal., 40, 93-108 (2004) · Zbl 1069.35082
[42] Adami, R.; Golse, F.; Teta, A., Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys., 127, 1193-1220 (2007) · Zbl 1118.81021
[43] Erdös, L.; Schlein, B.; Yau, H.-T., Derivation of the gross-pitaevskii hierarchy for the dynamics of bose-Einstein condensate, Comm. Pure Appl. Math., 59, 1659-1741 (2006) · Zbl 1122.82018
[44] Erdös, L.; Schlein, B.; Yau, H.-T., Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math., 167, 515-614 (2007) · Zbl 1123.35066
[45] Erdös, L.; Schlein, B.; Yau, H.-T., Rigorous derivation of the gross-pitaevskii equation with a large interaction potential, J. Amer. Math. Soc., 22 (2009) · Zbl 1207.82031
[46] Erdös, L.; Schlein, B.; Yau, H.-T., Derivation of the gross-pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. of Math., 172, 291-370 (2010) · Zbl 1204.82028
[47] Kirkpatrick, K.; Schlein, B.; Staffilani, G., Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics, Amer. J. Math., 133, 91-130 (2011) · Zbl 1208.81080
[48] Chen, T.; Pavlović, N., The quintic NLS as the mean field limit of a boson gas with three-body interactions, J. Funct. Anal., 260, 959-997 (2011) · Zbl 1213.35368
[49] Chen, T.; Pavlović, N., Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in \(d = 3\) based on spacetime norms, Ann. Henri Poincaré, 15 (2014) · Zbl 1338.35406
[50] Chen, T.; Taliaferro, K., Derivation in strong topology and global well-posedness of solutions to the Gross-Pitaevskii hierarchy, Comm. Partial Differ. Equations, 39, 1658-1693 (2014) · Zbl 1301.35147
[51] Gressman, P.; Sohinger, V.; Staffilani, G., On the uniqueness of solutions to the periodic 3D Gross-Pitaevskii hierarchy, J. Funct. Anal., 266, 4705-4764 (2014) · Zbl 1297.35215
[52] Sohinger, V., A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on \(\mathbb{T}^3\) from the dynamics of many-body quantum systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32, 1337-1365 (2015) · Zbl 1328.35220
[53] Chen, X.; Holmer, J., On the Klainerman-Machedon conjecture for the quantum BBGKY hierarchy with self-interaction, J. Eur. Math. Soc., 18, 1161-1200 (2016) · Zbl 1342.35322
[54] Chen, X.; Holmer, J., Focusing quantum many-body dynamics: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation, Arch. Ration. Mech. Anal., 221, 631-676 (2016) · Zbl 1338.35407
[55] Chen, X.; Holmer, J., The rigorous derivation of the 2D cubic focusing NLS from quantum many-body evolution, Int. Math. Res. Not. IMRN, 4173-4216 (2017) · Zbl 1405.81029
[56] Chen, X.; Holmer, J., The derivation of the \(\mathbb{T}^3\) energy-critical NLS from quantum many-body dynamics, Invent. Math., 217, 433-547 (2019) · Zbl 1422.35148
[57] Mendelson, A. R.; Nahmod, D.; Rosenzweig, M.; Staffilani, G., A rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation, Adv. Math., 365, Article 107054 pp. (2020), 115 · Zbl 1436.81031
[58] Klimontovich, Y. L., The Statistical Theory of Non-Equilibrium Processes in a Plasma: International Series of Monographs in Natural Philosophy, Vol. 9, Vol. 9 (2013), Elsevier
[59] Klainerman, S.; Machedon, M., On the uniqueness of solutions to the Gross-Pitaevskii hierarchy, Comm. Math. Phys., 279, 169-185 (2008) · Zbl 1147.37034
[60] Chen, T.; Pavlović, N., On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies, Discrete Contin. Dyn. Syst., 27, 715-739 (2010) · Zbl 1190.35207
[61] Chen, T.; Hainzl, C.; Pavlović, N.; Seiringer, R., On the well-posedness and scattering for the Gross-Pitaevskii hierarchy via quantum de Finetti, Lett. Math. Phys., 104, 871-891 (2014) · Zbl 1297.35214
[62] Hong, Y.; Taliaferro, K.; Xie, Z., Unconditional uniqueness of the cubic Gross-Pitaevskii hierarchy with low regularity, SIAM J. Math. Anal., 47, 3314-3341 (2015) · Zbl 1343.35198
[63] Chen, T.; Hainzl, C.; Pavlović, N.; Seiringer, R., Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti, Comm. Pure Appl. Math., 68, 1845-1884 (2015) · Zbl 1326.35332
[64] Sohinger, V.; Staffilani, G., Randomization and the Gross-Pitaevskii hierarchy, Arch. Ration. Mech. Anal., 218, 417-485 (2015) · Zbl 1372.35287
[65] Hong, Y.; Taliaferro, K.; Xie, Z., Uniqueness of solutions to the 3D quintic Gross-Pitaevskii hierarchy, J. Funct. Anal., 270, 34-67 (2016) · Zbl 1331.35319
[66] Herr, S.; Sohinger, V., The Gross-Pitaevskii hierarchy on general rectangular tori, Arch. Ration. Mech. Anal., 220, 1119-1158 (2016) · Zbl 1334.35315
[67] Chen, X.; Holmer, J., The unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on \(\mathbb{T}^3 (2020)\), arXiv preprint arXiv:2006.05915
[68] Ammari, Z.; Liard, Q.; Rouffort, C., On well-posedness for general hierarchy equations of Gross-Pitaevskii and Hartree type, Arch. Ration. Mech. Anal., 238, 845-900 (2020) · Zbl 1446.35179
[69] Benedetto, D.; Castella, F.; Esposito, R.; Pulvirenti, M., From the \(N\)-body Schrödinger equation to the quantum Boltzmann equation: a term-by-term convergence result in the weak coupling regime, Comm. Math. Phys., 277, 1-44 (2008) · Zbl 1148.82022
[70] M. Pulvirenti, The weak-coupling limit of large classical and quantum systems, in: International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 229-256. · Zbl 1105.35129
[71] H. Spohn, Weakly nonlinear wave equations with random initial data, in: Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 2128-2143. · Zbl 1230.82035
[72] Deng, Y.; Hani, Z., Full derivation of the wave kinetic equation (2021), arXiv preprint arXiv:2104.11204
[73] Deng, Y.; Hani, Z., Propagation of chaos and the higher order statistics in the wave kinetic theory (2021), arXiv preprint arXiv:2110.04565
[74] Lukkarinen, J., Asymptotics of resolvent integrals: the suppression of crossings for analytic lattice dispersion relations, J. Math. Pures Appl. (9), 87, 193-225 (2007) · Zbl 1108.37050
[75] Eckern, U., Relaxation processes in a condensed bose gas, J. Low Temp. Phys., 54, 333-359 (1984)
[76] Bohm, D.; Pines, D., A collective description of electron interactions. i. magnetic interactions, Phys. Rev., 82, 625-634 (1951) · Zbl 0043.43705
[77] Escobedo, M.; Pezzotti, F.; Valle, M., Analytical approach to relaxation dynamics of condensed bose gases, Ann. Physics, 326, 808-827 (2011) · Zbl 1214.82099
[78] Imamovic-Tomasovic, M.; Griffin, A., Quasiparticle kinetic equation in a trapped bose gas at low temperatures, J. Low Temp. Phys., 122, 617-655 (2001), cited By 40
[79] Robbins, H., A remark on Stirling’s formula, Amer. Math. Monthly, 62, 26-29 (1955) · Zbl 0068.05404
[80] Hewitt, E.; Savage, L. J., Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80, 470-501 (1955) · Zbl 0066.29604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.