×

Lieb-Thirring and Jensen sums for non-self-adjoint Schrödinger operators on the half-line. (English) Zbl 1539.34091

Summary: We prove upper and lower bounds for sums of eigenvalues of Lieb-Thirring type for non-self-adjoint Schrödinger operators on the half-line. The upper bounds are established for general classes of integrable potentials and are shown to be optimal in various senses by proving the lower bounds for specific potentials. We consider sums that correspond to both the critical and non-critical cases.

MSC:

34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)

References:

[1] A. A. Abramov, A. Aslanyan, and E. B. Davies, Bounds on complex eigenvalues and resonances. J. Phys. A 34 (2001), no. 1, 57-72 Zbl 1123.81415 MR 1819914 · Zbl 1123.81415 · doi:10.1088/0305-4470/34/1/304
[2] S. Bögli, Schrödinger operator with non-zero accumulation points of complex eigenvalues. Comm. Math. Phys. 352 (2017), no. 2, 629-639 Zbl 1364.35256 MR 3627408 · Zbl 1364.35256 · doi:10.1007/s00220-016-2806-5
[3] S. Bögli, Local convergence of spectra and pseudospectra. J. Spectr. Theory 8 (2018), no. 3, 1051-1098 Zbl 1500.47011 MR 3831156 · Zbl 1500.47011 · doi:10.4171/JST/222
[4] S. Bögli, Improved Lieb-Thirring type inequalities for non-selfadjoint Schrödinger oper-ators. In From complex analysis to operator theory-a panorama, pp. 151-161, Oper. Theory Adv. Appl. 291, Birkhäuser/Springer, Cham, 2023 MR 4651274 · doi:10.1007/978-3-031-31139-0_9
[5] S. Bögli and J.-C. Cuenin, Counterexample to the Laptev-Safronov conjecture. Comm. Math. Phys. 398 (2023), no. 3, 1349-1370 Zbl 1510.35191 MR 4561804 · Zbl 1510.35191 · doi:10.1007/s00220-022-04546-z
[6] S. Bögli and F. Štampach, On Lieb-Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schrödinger operators. J. Spectr. Theory 11 (2021), no. 3, 1391-1413 Zbl 07481672 MR 4322041 · Zbl 07481672 · doi:10.4171/jst/378
[7] A. Borichev, L. Golinskii, and S. Kupin, A Blaschke-type condition and its application to complex Jacobi matrices. Bull. Lond. Math. Soc. 41 (2009), no. 1, 117-123 Zbl 1175.30007 MR 2481997 · Zbl 1175.30007 · doi:10.1112/blms/bdn109
[8] A. Borichev, L. Golinskii, and S. Kupin, On zeros of analytic functions satisfying non-radial growth conditions. Rev. Mat. Iberoam. 34 (2018), no. 3, 1153-1176 Zbl 1401.30004 MR 3850283 · Zbl 1401.30004 · doi:10.4171/RMI/1020
[9] P. Briet, J.-C. Cuenin, L. Golinskii, and S. Kupin, Lieb-Thirring inequalities for an effect-ive Hamiltonian of bilayer graphene. J. Spectr. Theory 11 (2021), no. 3, 1145-1178 Zbl 1484.35297 MR 4322033 · Zbl 1484.35297 · doi:10.4171/jst/368
[10] J.-C. Cuenin, Schrödinger operators with complex sparse potentials. Comm. Math. Phys. 392 (2022), no.3, 951-992 Zbl 07533714 MR 4426735 · Zbl 07533714 · doi:10.1007/s00220-022-04358-1
[11] E. B. Davies and J. Nath, Schrödinger operators with slowly decaying potentials. J. Com-put. Appl. Math. 148 (2002), no. 1, 1-28 Zbl 1019.34083 MR 1946184 · Zbl 1019.34083 · doi:10.1016/S0377-0427(02)00570-8
[12] M. Demuth, M. Hansmann, and G. Katriel, On the discrete spectrum of non-selfadjoint operators. J. Funct. Anal. 257 (2009), no. 9, 2742-2759 Zbl 1183.47016 MR 2559715 · Zbl 1183.47016 · doi:10.1016/j.jfa.2009.07.018
[13] M. Demuth, M. Hansmann, and G. Katriel, Eigenvalues of non-selfadjoint operators: a comparison of two approaches. In Mathematical physics, spectral theory and stochastic analysis, pp. 107-163, Oper. Theory Adv. Appl. 232, Birkhäuser/Springer Basel AG, Basel, 2013 Zbl 1280.47005 MR 3077277 · Zbl 1280.47005 · doi:10.1007/978-3-0348-0591-9_2
[14] C. Dubuisson, On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator. Integral Equations Operator Theory 78 (2014), no. 2, 249-269 Zbl 1302.35274 MR 3157981 · Zbl 1302.35274 · doi:10.1007/s00020-013-2112-y
[15] C. Dubuisson, Note on Lieb-Thirring type inequalities for a complex perturbation of frac-tional Laplacian. J. Math. Phys. Anal. Geom. 11 (2015), no. 3, 245-266, 301, 304 Zbl 1332.35245 MR 3443274 · Zbl 1332.35245 · doi:10.15407/mag11.03.245
[16] R. L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. 43 (2011), no. 4, 745-750 Zbl 1228.35158 MR 2820160 · Zbl 1228.35158 · doi:10.1112/blms/bdr008
[17] R. L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials. III. Trans. Amer. Math. Soc. 370 (2018), no. 1, 219-240 Zbl 1390.35204 MR 3717979 · Zbl 1390.35204 · doi:10.1090/tran/6936
[18] R. L. Frank, Private communication, 2021
[19] R. L. Frank, A. Laptev, E. H. Lieb, and R. Seiringer, Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials. Lett. Math. Phys. 77 (2006), no. 3, 309-316 Zbl 1160.81382 MR 2260376 · Zbl 1160.81382 · doi:10.1007/s11005-006-0095-1
[20] R. L. Frank, A. Laptev, and O. Safronov, On the number of eigenvalues of Schrödinger operators with complex potentials. J. Lond. Math. Soc. (2) 94 (2016), no. 2, 377-390 Zbl 1358.35074 MR 3556444 · Zbl 1358.35074 · doi:10.1112/jlms/jdw039
[21] R. L. Frank, A. Laptev, and R. Seiringer, A sharp bound on eigenvalues of Schrödinger operators on the half-line with complex-valued potentials. In Spectral theory and analysis, pp. 39-44, Oper. Theory Adv. Appl. 214, Birkhäuser/Springer Basel AG, Basel, 2011 Zbl 1253.35086 MR 2808462 · Zbl 1253.35086 · doi:10.1007/978-3-7643-9994-8_3
[22] R. L. Frank and J. Sabin, Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates. Amer. J. Math. 139 (2017), no. 6, 1649-1691 Zbl 1388.42018 MR 3730931 · Zbl 1388.42018 · doi:10.1353/ajm.2017.0041
[23] R. L. Frank and B. Simon, Eigenvalue bounds for Schrödinger operators with complex potentials. II. J. Spectr. Theory 7 (2017), no. 3, 633-658 Zbl 1386.35061 MR 3713021 · Zbl 1386.35061 · doi:10.4171/JST/173
[24] J. B. Garnett, Bounded analytic functions. first edn., Grad. Texts in Math. 236, Springer, New York, 2007 MR 2261424
[25] F. Gesztesy, Y. Latushkin, M. Mitrea, and M. Zinchenko, Nonselfadjoint operators, infinite determinants, and some applications. Russ. J. Math. Phys. 12 (2005), no. 4, 443-471 Zbl 1201.47028 MR 2201310 · Zbl 1201.47028
[26] L. Golinskii and S. Kupin, On non-selfadjoint perturbations of infinite band Schrödinger operators and Kato method. In Harmonic analysis, function theory, operator theory, and their applications, pp. 171-182, Theta Ser. Adv. Math. 19, Theta, Bucharest, 2017 Zbl 1424.35272 MR 3753899 · Zbl 1424.35272
[27] A. Laptev and O. Safronov, Eigenvalue estimates for Schrödinger operators with complex potentials. Comm. Math. Phys. 292 (2009), no. 1, 29-54 Zbl 1185.35045 MR 2540070 · Zbl 1185.35045 · doi:10.1007/s00220-009-0883-4
[28] Y. Latushkin and A. Sukhtayev, The algebraic multiplicity of eigenvalues and the Evans function revisited. Math. Model. Nat. Phenom. 5 (2010), no. 4, 269-292 Zbl 1193.35110 MR 2662459 · Zbl 1193.35110 · doi:10.1051/mmnp/20105412
[29] B. Y. Levin, On a generalization of the Fourier-Plancherel transform. Učenye Zapiski Har’kov. Gos. Univ. Zapiski Naučno-Issled. Inst. Mat. Meh. i Har’kov. Mat. Obšč. (4) 28(20) (1950), 83-94 MR 0050709
[30] E. Lieb and W. Thirring, Bound for the kinetic energy of fermions which proves the sta-bility of matter. Phys. Rev. Lett. 35 (1957), 687-689 · doi:10.1103/physrevlett.35.687
[31] M. Marletta and R. Scheichl, Eigenvalues in spectral gaps of differential operators. J. Spectr. Theory 2 (2012), no. 3, 293-320 Zbl 1256.65079 MR 2947289 · Zbl 1256.65079 · doi:10.4171/jst/30
[32] M. A. Naȋmark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis. Amer. Math. Soc. Transl. (2) 16 (1960), 103-193 MR 0117382 · Zbl 0100.29504 · doi:10.1090/trans2/016/02
[33] B. S. Pavlov, On a non-selfadjoint Schrödinger operator. In Problems of mathematical physics, No. I: Spectral theory and wave processes (Russian), pp. 102-132, Leningrad University, Leningrad, 1966 MR 0203530 · Zbl 0171.08602
[34] B. S. Pavlov, On a non-selfadjoint Schrödinger operator. II. In Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems (Russian), pp. 133-157, Leningrad University, Leningrad, 1967 MR 0234319 · Zbl 0189.38103
[35] B. S. Pavlov, On a nonselfadjoint Schrödinger operator. III. In Problems of mathematical physics, No. 3: Spectral theory (Russian), pp. 59-80, Leningrad University, Leningrad, 1968 MR 0348554
[36] M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis. Academic Press, New York and London, 1972 Zbl 0242.46001 MR 0493419 · Zbl 0242.46001
[37] O. Safronov, On a sum rule for Schrödinger operators with complex potentials. Proc. Amer. Math. Soc. 138 (2010), no. 6, 2107-2112 Zbl 1192.47044 MR 2596049 · Zbl 1192.47044 · doi:10.1090/S0002-9939-10-10248-2
[38] D. Sambou, Lieb-Thirring type inequalities for non-self-adjoint perturbations of magnetic Schrödinger operators. J. Funct. Anal. 266 (2014), no. 8, 5016-5044 Zbl 1300.81031 MR 3177329 · Zbl 1300.81031 · doi:10.1016/j.jfa.2014.02.020
[39] A. Stepanenko, Bounds for Schrödinger operators on the half-line perturbed by dissipative barriers. Integral Equations Operator Theory 93 (2021), no. 6, article no. 60 Zbl 1489.34124 MR 4341412 · Zbl 1489.34124 · doi:10.1007/s00020-021-02675-z
[40] A. Stepanenko, Spectral inclusion and pollution for a class of dissipative perturbations. J. Math. Phys. 62 (2021), no. 1, article no. 013501 Zbl 1456.81182 MR 4194150 · Zbl 1456.81182 · doi:10.1063/5.0028440
[41] S. A. Stepin, Complex potentials: bound states, quantum dynamics and wave operators. In Semigroups of operators-theory and applications, pp. 287-297, Springer Proc. Math. Stat. 113, Springer, Cham, 2015 Zbl 1332.34138 MR 3295789 · Zbl 1332.34138 · doi:10.1007/978-3-319-12145-1_18
[42] G. Teschl, Ordinary differential equations and dynamical systems. Grad. Stud. Math. 140, American Mathematical Society, Providence, RI, 2012 Zbl 1263.34002 MR 2961944 · doi:10.1090/gsm/140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.