×

Exact solution of weighted partially directed walks crossing a square. (English) Zbl 1538.82031

Summary: We consider partially directed walks crossing a \(L \times L\) square weighted according to their length by a fugacity \(t\). The exact solution of this model is computed in three different ways, depending on whether \(t\) is less than, equal to or greater than 1. In all cases a complete expression for the dominant asymptotic behaviour of the partition function is calculated. The model admits a dilute to dense phase transition, where for \(0 < t < 1\) the partition function scales exponentially in \(L\) whereas for \(t > 1\) the partition function scales exponentially in \(L^2\), and when \(t = 1\) there is an intermediate scaling which is exponential in \(L\log L\). As such we provide an exact solution of a model of the dilute to dense polymeric phase transition in two dimensions.

MSC:

82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
82D60 Statistical mechanics of polymers
82C23 Exactly solvable dynamic models in time-dependent statistical mechanics

References:

[1] Bauerschmidt, R.; Brydges, D. C.; Slade, G., Critical two-point function of the 4-dimensional weakly self-avoiding walk, Commun. Math. Phys., 338, 169-93 (2015) · Zbl 1320.82031 · doi:10.1007/s00220-015-2353-5
[2] Bousquet-Mélou, M.; Guttmann, A. J.; Jensen, I., Self-avoiding walks crossing a square, J. Phys. A: Math. Gen., 38, 9159-81 (2005) · Zbl 1078.82009 · doi:10.1088/0305-4470/38/42/001
[3] Bradly, C. J.; Owczarek, A. L., Critical scaling of lattice polymers confined to a box without endpoint restriction, J. Math. Chem., 60, 1903-20 (2022) · Zbl 1500.82003 · doi:10.1007/s10910-022-01387-y
[4] Brak, R.; Dyke, P.; Lee, J.; Owczarek, A. L.; Prellberg, T.; Rechnitzer, A.; Whittington, S. G., A self-interacting partially directed walk subject to a force, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1162.82011 · doi:10.1088/1751-8113/42/8/085001
[5] Burkhardt, T. W.; Guim, I., Self-avoiding walks that cross a square, J. Phys. A: Math. Gen., 24, L1221 (1991) · doi:10.1088/0305-4470/24/20/003
[6] Cardy, J. L., Conformal invariance and surface critical behavior, Nucl. Phys. B, 240, 514-32 (1984) · doi:10.1016/0550-3213(84)90241-4
[7] Carmona, P.; Pétrélis, N., Interacting partially directed self avoiding walk: scaling limits, Electron. J. Probab., 21, 1-52 (2016) · Zbl 1346.60136 · doi:10.1214/16-EJP4618
[8] Forgacs, G., Unbinding of semiflexible directed polymers in 1+1 dimensions, J. Phys. A: Math. Theor., 24, L1099 (1991) · doi:10.1088/0305-4470/24/18/006
[9] Guttmann, A. J.; Jensen, I., Self-avoiding walks and polygons crossing a domain on the square and hexagonal lattices, J. Phys. A: Math. Theor., 55 (2022) · Zbl 1515.82070 · doi:10.1088/1751-8121/aca3de
[10] Guttmann, A. J.; Jensen, I.; Owczarek, A. L., Self-avoiding walks contained within a square, J. Phys. A: Math. Theor., 55 (2022) · Zbl 1515.82071 · doi:10.1088/1751-8121/ac9439
[11] Janse van Rensburg, E. J.; Prellberg, T., Forces and pressures in adsorbing partially directed walks, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1342.82067 · doi:10.1088/1751-8113/49/20/205001
[12] Janse van Rensburg, E. J.; Prellberg, T.; Rechnitzer, A., Partially directed paths in a wedge, J. Comb. Theory A, 115, 623-50 (2008) · Zbl 1160.05003 · doi:10.1016/j.jcta.2007.08.003
[13] Knuth, D. E., Mathematics and computer science: coping with finiteness, Science, 194, 1235-42 (1976) · Zbl 1225.68001 · doi:10.1126/science.194.4271.1235
[14] Knuth, D. E., The Art of Computer Programming, Volume 1: Fundamental Algorithms (1997), Reading, MA: Addison-Wesley, Reading, MA · Zbl 0895.68055
[15] Lam, P-M; Zhen, Y.; Zhou, H.; Zhou, J., Adsorption of externally stretched two-dimensional flexible and semiflexible polymers near an attractive wall, Phys. Rev. E, 79 (2009) · doi:10.1103/PhysRevE.79.061127
[16] Lawler, G. F.; Schramm, O.; Werner, W., On the scaling limit of planar self-avoiding walk, Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Multifractals, Probability and Statistical Mechanics, Applications. In Part the Proceedings of a Special Session Held During the Annual Meeting of the American Mathematical Society, San Diego, CA, USA, January 2002, pp 339-64 (2004), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1069.60089
[17] Legrand, A.; Pétrélis, N., A sharp asymptotics of the partition function for the collapsed interacting partially directed self-avoiding walk, J. Stat. Phys., 186, 41 (2022) · Zbl 1490.60278 · doi:10.1007/s10955-022-02890-x
[18] Madras, N., Critical behaviour of self-avoiding walks that cross a square, J. Phys. A: Math. Gen., 28, 1535 (1995) · Zbl 0853.60098 · doi:10.1088/0305-4470/28/6/010
[19] Madras, N.; Slade, G., The Self-Avoiding Walk (1996), Boston, MA: Birkhäuser, Boston, MA · Zbl 0872.60076
[20] Owczarek, A. L., Exact solution for semi-flexible partially directed walks at an adsorbing wall, J. Stat. Mech. (2009) · doi:10.1088/1742-5468/2009/11/P11002
[21] Owczarek, A. L., Effect of stiffness on the pulling of an adsorbing polymer from a wall: an exact solution of a partially directed walk model, J. Phys. A: Math. Theor., 43 (2010) · Zbl 1192.82098 · doi:10.1088/1751-8113/43/22/225002
[22] Owczarek, A. L.; Brak, R.; Rechnitzer, A., Self-avoiding walks in slits and slabs with interactive walls, J. Math. Chem., 45, 113-28 (2009) · Zbl 1169.82314 · doi:10.1007/s10910-008-9371-x
[23] Owczarek, A. L.; Prellberg, T., Exact solution of semi-flexible and super-flexible interacting partially directed walks, J. Stat. Mech. (2007) · doi:10.1088/1742-5468/2007/11/P11010
[24] Owczarek, A. L.; Prellberg, T.; Brak, R., The tricritical behaviour of self-interacting partially directed walks, J. Stat. Phys., 72, 737-72 (1993) · Zbl 1101.82337 · doi:10.1007/BF01048031
[25] Vieira, R. S., On the number of roots of self-inversive polynomials on the complex unit circle, Ramanujan J., 42, 363-9 (2017) · Zbl 1422.30013 · doi:10.1007/s11139-016-9804-2
[26] Whittington, S. G., Self-avoiding walks and polygons confined to a square (2022) · Zbl 1515.82074
[27] Whittington, S. G.; Guttmann, A. J., Self-avoiding walks which cross a square, J. Phys. A: Math. Gen., 23, 5601-9 (1990) · doi:10.1088/0305-4470/23/23/030
[28] Zhou, H.; Zhou, J.; Ou-Yang, Z-C; Kumar, S., Collapse transition of two-dimensional flexible and semiflexible polymers, Phys. Rev. Lett., 97 (2006) · doi:10.1103/PhysRevLett.97.158302
[29] Zhou, Z.; Grimm, J.; Fang, S.; Deng, Y.; Garoni, T. M., Random-length random walks and finite-size scaling in high dimensions, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.185701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.