×

The wave stability of solitary waves over a bump for the full Euler equations. (English) Zbl 1538.76023

Summary: In this work, we present a numerical study of the wave stability of steady solitary waves over a localised topographic obstacle through the full Euler equations. There are two branches of the solutions: one from the perturbed uniform flow and the other from the perturbed solitary-wave flow. We find that steady waves from the perturbed uniform flow are always stable with respect to perturbations of its amplitude. Regarding the perturbed solitary wave, when the perturbed initial condition has smaller amplitude than the steady solution, we notice a certain type of stability. Yet, when the perturbed initial condition has larger amplitude than the steady solution an onset of wave-breaking seem to occur.

MSC:

76B07 Free-surface potential flows for incompressible inviscid fluids
76B25 Solitary waves for incompressible inviscid fluids
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics

Software:

Matlab

References:

[1] Akylas, TR, On the excitation of long nonlinear water waves by a moving pressure distributions, J Fluid Mech, 141, 455-466 (1984) · Zbl 0551.76018 · doi:10.1017/S0022112084000926
[2] Asavanant, J.; Maleewong, M.; Choi, J., Computation of free-surface flows due to pressure distribution, Korean Math Soc, 16, 137-152 (2001) · Zbl 1101.76373
[3] Baines, P., Topographic effects in stratified flows (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0840.76001
[4] Binder, BJ; Dias, F.; Vanden-Broeck, JM, Forced solitary waves and fronts past submerged obstacles, Chaos, 15 (2005) · Zbl 1144.37321 · doi:10.1063/1.1992407
[5] Camassa, R.; Wu, TY, Stability of forced steady solitary waves, PhilosTrans R Soc Lond A, 337, 429-466 (1991) · Zbl 0748.76058
[6] Camassa, R.; Wu, TY, Stability of some steady solutions for the forced KdV equation, Physica D, 51, 295-307 (1991) · Zbl 0742.35053 · doi:10.1016/0167-2789(91)90240-A
[7] Chardard, F.; Dias, F.; Nguyen, HY; Vanden-Broeck, JM, Stability of some steady solutions to the forced KdV equation with one or two bumps, J Eng Math, 70, 175-189 (2011) · Zbl 1254.76020 · doi:10.1007/s10665-010-9424-6
[8] Dyachenko, AL; Zakharov, VE; Kuznetsov, EA, Nonlinear dynamics of the free surface of an ideal fluid, Plasma Phys, 22, 916-928 (1996)
[9] Ermakov, E.; Stepanyants, Y., Soliton interaction with external forcing within the Korteweg-de Vries equation, Chaos, 29, 013117-1-013117-14 (2019) · Zbl 1406.35328 · doi:10.1063/1.5063561
[10] Flamarion, MV, Rotational flows over obstacles in the forced Korteweg-de Vries framework, Sel Mat, 8, 1, 125-130 (2021) · doi:10.17268/sel.mat.2021.01.12
[11] Flamarion, MV; Ribeiro-Jr, R., Gravity-capillary flows over obstacles for the fifth-order forced Korteweg-de Vries equation, J Eng Math, 129, 17 (2021) · Zbl 1497.76020 · doi:10.1007/s10665-021-10153-z
[12] Flamarion, MV; Ribeiro-Jr, R., An iterative method to compute conformal mappings and their inverses in the context of water waves over topographies, Int J Numer Meth Fl, 93, 11, 3304-3311 (2021) · doi:10.1002/fld.5030
[13] Flamarion, MV; Ribeiro-Jr, R., Solitary water wave interactions for the forced Korteweg-de Vries equation, Comp Appl Math, 40, 312 (2021) · Zbl 1499.76023 · doi:10.1007/s40314-021-01700-6
[14] Flamarion, MV; Milewski, PA; Nachbin, A., Rotational waves generated by current-topography interaction, Stud Appl Math, 142, 433-464 (2019) · Zbl 1418.35303 · doi:10.1111/sapm.12253
[15] Grimshaw, R.; Maleewong, M., Stability of steady gravity waves generated by a moving localized pressure disturbance in water of finite depth, Phys Fluids, 25 (2013) · Zbl 1320.76049 · doi:10.1063/1.4812285
[16] Grimshaw, R.; Smyth, N., Resonant flow of a stratified fluid over topography in water of finite depth, J Fluid Mech, 169, 235-276 (1986) · Zbl 0614.76108 · doi:10.1017/S002211208600071X
[17] Ifrim, M.; Tataru, D., No solitary waves in 2D gravity and capillary waves in deep water, Nonlinearity, 33, 5447 (2020) · Zbl 1459.76029 · doi:10.1088/1361-6544/ab95ad
[18] Johnson, RS, Models for the formation of a critical layer in water wave propagation, Phil Trans R Soc A, 370, 1638-1660 (2012) · Zbl 1250.76037 · doi:10.1098/rsta.2011.0456
[19] Kim, H.; Choi, H., A study of wave trapping between two obstacles in the forced Korteweg-de Vries equation, J Eng Math, 108, 197-208 (2018) · Zbl 1456.65133 · doi:10.1007/s10665-017-9919-5
[20] Lee, S., Dynamics of Trapped Solitary Waves for the Forced KdV Equation, Symmetry, 21, 467-490 (2018)
[21] Lee, S.; Whang, S., Trapped supercritical waves for the forced KdV equation with two bumps, Appl Math Model, 39, 2649-2660 (2015) · Zbl 1443.76111 · doi:10.1016/j.apm.2014.11.007
[22] Milewski, PA, The Forced Korteweg-de Vries equation as a model for waves generated by topography, CUBO Math J, 6, 33-51 (2004) · Zbl 1091.76009
[23] Pratt, LJ, On nonlinear flow with multiple obstructions, J Atmos Sci, 41, 1214-1225 (1984) · doi:10.1175/1520-0469(1984)041<1214:ONFWMO>2.0.CO;2
[24] Trefethen, LN, Spectral Methods in MATLAB (2001), Philadelphia: SIAM, Philadelphia · Zbl 0953.68643
[25] Vanden-Broeck, JM, Steep solitary waves in water of finite depth with constant vorticity, J Fluid Mech, 274, 339-348 (1994) · Zbl 0814.76027 · doi:10.1017/S0022112094002144
[26] Vanden-Broeck, JM; Tuck, E., Waveless free-surface pressure distributions, J Ship Res, 29, 151-158 (1985) · doi:10.5957/jsr.1985.29.3.151
[27] Viotti, C.; Dutykh, D.; Dias, F., The conformal-mapping method for surface gravity wave in the presence of variable bathymetry and mean current, Procedia IUTAM, 11, 110-118 (2014) · doi:10.1016/j.piutam.2014.01.053
[28] Wu DM, Wu TY (1982) Three-dimensional nonlinear long waves due to moving surface pressure. In: Proc. 14th. Symp. on Naval Hydrodynamics. Nat Acad Sci Washington DC, p. 103-25
[29] Wu, TY, Generation of upstream advancing solitons by moving disturbances, J Fluid Mech, 184, 75-99 (1987) · Zbl 0644.76017 · doi:10.1017/S0022112087002817
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.