×

Determination of the initial stress tensor from deformation of underground opening in excavation process. (English) Zbl 1538.65539

Summary: A method for the detection of the initial stress tensor is proposed. The method is based on measuring distances between pairs of points located on the wall of underground opening in the excavation process. This methods is based on solving twelve auxiliary problems in the theory of elasticity with force boundary conditions, which is done using the least squares method. The optimal location of the pairs of points on the wall of underground openings is studied. The pairs must be located so that the condition number of the least square matrix has the minimal value, which guarantees a reliable estimation of initial stress tensor.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74A10 Stress
93E24 Least squares and related methods for stochastic control systems
65K10 Numerical optimization and variational techniques
74B99 Elastic materials
Full Text: DOI

References:

[1] Bhatia, R., Matrix Analysis, Graduate Texts in Mathematics 169. Springer, New York (1997) · Zbl 0863.15001 · doi:10.1007/978-1-4612-0653-8
[2] Blaheta, R.; Jakl, O.; Kohut, R.; Starý, J., GEM – a platform for advanced mathematical geosimulations, Parallel Processing and Applied Mathematics. Part 1 Lecture Notes in Computer Science 6067. Springer, Berlin (2010), 266-275 · doi:10.1007/978-3-642-14390-8_28
[3] Haimson, B. C.; Cornet, F. H., ISRM suggested methods for rock stress estimation-Part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF), Int. J. Rock Mech. Min. Sci. 40 (2003), 1011-1020 · doi:10.1016/j.ijrmms.2003.08.002
[4] Halmos, P. R., Measure Theory, Graduate Texts in Mathematics 18. Springer, Berlin (1974) · Zbl 0283.28001 · doi:10.1007/978-1-4684-9440-2
[5] Hudson, J. A.; Cornet, F. H.; Christiansson, R., ISRM suggested methods for rock stress estimation-Part 1: Strategy for rock stress estimation, Int. J. Rock Mech. Min. Sci. 40 (2003), 991-998 · doi:10.1016/j.ijrmms.2003.07.011
[6] Lax, P. D., Linear Algebra and Its Applications, Pure and Applied Mathematics. Wiley, New York (2007) · Zbl 1152.15001
[7] Nečas, J.; Hlaváček, I., Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction, Studies in Applied Mechanics 3. Elsevier, Amsterdam (1981) · Zbl 0448.73009 · doi:10.1016/c2009-0-12554-0
[8] Sjöberg, J.; Christiansson, R.; Hudson, J. A., ISRM suggested methods for rock stress estimation-Part 2: Overcoring methods, Int. J. Rock Mech. Min. Sci. 40 (2003), 999-1010 · doi:10.1016/j.ijrmms.2003.07.012
[9] al., K. Souček et, Comprehensive Geological Characterization of URF Bukov-Part II. Geotechnical Characterization, Final report no. 221/2018/ENG. Ostrava, SÚRAO (2017)
[10] Sugawara, K.; Obara, Y., Draft ISRM suggested method for in situ stress measurement using the compact conical-ended borehole overcoring (CCBO) technique, Int. J. Rock Mech. Min. Sci. 36 (1999), 307-322 · doi:10.1016/S0148-9062(99)00004-2
[11] Wiles, T. D.; Kaiser, P. K., {\it In situ} stress determination using the under-excavation technique-I. Theory, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 31 (1994), 439-446 · doi:10.1016/0148-9062(94)90147-3
[12] Wiles, T. D.; Kaiser, P. K., {\it In situ} stress determination using the under-excavation technique-II. Applications, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 31 (1994), 447-456 · doi:10.1016/0148-9062(94)90148-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.