×

Weak Galerkin finite element methods for \(\mathbf{H}(\mathrm{curl};\Omega)\) and \(\mathbf{H}(\mathrm{curl},\operatorname{div};\Omega)\)-elliptic problems. (English) Zbl 1538.65530

Summary: Weak Galerkin finite element methods (WG-FEMs) for \(\mathbf{H}(\mathrm{curl};\Omega)\) and \(\mathbf{H}(\mathrm{curl},\operatorname{div};\Omega)\)-elliptic problems are investigated in this paper. The WG method as applied to curl-curl and grad-div problems uses two operators: discrete weak curl and discrete weak divergence, with appropriately defined stabilizations that enforce a weak continuity of the approximating functions. This WG method is highly flexible by allowing the use of discontinuous approximating functions on the arbitrary shape of polyhedra and, at the same time, is parameter-free. The optimal order of convergence is established for the WG approximations in discrete \(H^1\) norm and \(L^2\) norm. In fact, theoretical convergence analysis holds under low regularity requirements of the analytical solution. Results of numerical experiments that corroborate the theoretical results are also presented.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65N15 Error bounds for boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
78A25 Electromagnetic theory (general)
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Adams, R. A.; Fournier, J. J.F., Sobolev Spaces (2003), Academic Press: Academic Press Amsterdam · Zbl 1098.46001
[2] Bossavit, Alain, Two dual formulations of the 3-d eddy-currents problem, Compel (1985)
[3] Bossavit, Alain, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements (1998), Academic Press · Zbl 0945.78001
[4] Brenner, Susanne; Li, Fengyan; Sung, Li-Yeng, A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations, Math. Comput., 76, 258, 573-595 (2007) · Zbl 1126.78017
[5] Brenner, Susanne C.; Cui, Jintao; Li, Fengyan; Sung, L-Y., A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem, Numer. Math., 109, 4, 509-533 (2008) · Zbl 1166.78006
[6] Brenner, Susanne C.; Li, Fengyan; Sung, Li-Yeng, A locally divergence-free interior penalty method for two-dimensional curl-curl problems, SIAM J. Numer. Anal., 46, 3, 1190-1211 (2008) · Zbl 1168.65068
[7] Buffa, Annalisa; Ammari, Habib; Nédélec, Jean-Claude, A justification of eddy currents model for the Maxwell equations, SIAM J. Appl. Math., 60, 5, 1805-1823 (2000) · Zbl 0978.35070
[8] Cessenat, Michel, Mathematical Methods in Electromagnetism: Linear Theory and Applications, vol. 41 (1996), World Scientific · Zbl 0917.65099
[9] Cessenat, Michel, Mathematical Methods in Electromagnetism: Linear Theory and Applications, vol. 41 (1996), World Scientific · Zbl 0917.65099
[10] Chen, Wenbin; Wang, Fang; Wang, Yanqiu, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA J. Numer. Anal., 36, 2, 897-921 (2016) · Zbl 1433.76075
[11] Costabel, Martin, A coercive bilinear form for Maxwell’s equations, J. Math. Anal. Appl., 157, 2, 527-541 (1991) · Zbl 0738.35095
[12] Costabel, Martin; Dauge, Monique, Singularities of electromagnetic fields in polyhedral domains, Arch. Ration. Mech. Anal., 151, 3, 221-276 (2000) · Zbl 0968.35113
[13] Costabel, Martin; Dauge, Monique, Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math., 93, 2, 239-277 (2002) · Zbl 1019.78009
[14] Costabel, Martin; Dauge, Monique; Nicaise, Serge, Singularities of Maxwell interface problems, ESAIM: Math. Model. Numer. Anal., 33, 3, 627-649 (1999) · Zbl 0937.78003
[15] Bonnet-Ben Dhia, Anne-Sophie; Hazard, Christophe; Lohrengel, Stephanie, A singular field method for the solution of Maxwell’s equations in polyhedral domains, SIAM J. Appl. Math., 59, 6, 2028-2044 (1999) · Zbl 0933.78007
[16] Dirks, K. Heinz, Quasi-stationary fields for microelectronic applications, Electr. Eng., 79, 2, 145-155 (1996)
[17] Duan, Huo-Yuan; Tan, Roger C. E.; Yang, Suh-Yuh; You, Cheng-Shu, Computation of Maxwell singular solution by nodal-continuous elements, J. Comput. Phys., 268, 63-83 (2014) · Zbl 1349.78065
[18] Duan, Huo-Yuan; Tan, Roger C. E.; Yang, Suh-Yuh; You, Cheng-Shu, A mixed \(\text{H}^1\)-conforming finite element method for solving Maxwell’s equations with non-\( \text{H}^1\) solution, SIAM J. Sci. Comput., 40, 1, A224-A250 (2018) · Zbl 1383.78037
[19] Duan, Huoyuan; Lin, Ping; Tan, Roger CE, Analysis of a continuous finite element method for \(h(\text{curl}, \text{div})\)-elliptic interface problem, Numer. Math., 123, 4, 671-707 (2013) · Zbl 1268.65151
[20] Duan, Huoyuan; Ma, Junhua; Tan, Roger CE; Wang, Can, A coercive mixed formulation for the generalized Maxwell problem, J. Comput. Appl. Math., 402, Article 113787 pp. (2022) · Zbl 1477.65208
[21] Girault, Vivette; Raviart, Pierre-Arnaud, Finite Element Methods for Navier- Stokes Equations: Theory and Algorithms, vol. 5 (2012), Springer Science & Business Media · Zbl 0585.65077
[22] Harper, Graham; Liu, Jiangguo; Tavener, Simon; Zheng, Bin, Lowest-order weak Galerkin finite element methods for linear elasticity on rectangular and brick meshes, J. Sci. Comput., 78, 3, 1917-1941 (2019) · Zbl 1419.65110
[23] Hazard, Christophe; Lohrengel, Stephanie, A singular field method for Maxwell’s equations: numerical aspects for 2d magnetostatics, SIAM J. Numer. Anal., 40, 3, 1021-1040 (2002) · Zbl 1055.78011
[24] Li, Jichun; Ye, Xiu; Zhang, Shangyou, A weak Galerkin least-squares finite element method for div-curl systems, J. Comput. Phys., 363, 79-86 (2018) · Zbl 1398.65306
[25] Monk, Peter, Finite Element Methods for Maxwell’s Equations (2003), Oxford University Press · Zbl 1024.78009
[26] Morand, Henri J-P.; Ohayon, Roger, Interactions Fluides-Structures, vol. 154 (1992), Masson: Masson Paris · Zbl 0754.73071
[27] Mu, Lin; Wang, Junping; Ye, Xiu; Zhang, Shangyou, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65, 1, 363-386 (2015) · Zbl 1327.65220
[28] Saranen, Jukka, On generalized harmonic fields in domains with anisotropic nonhomogeneous media, J. Math. Anal. Appl., 88, 1, 104-115 (1982) · Zbl 0508.35024
[29] Saranen, Jukka, On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media, J. Math. Anal. Appl., 91, 1, 254-275 (1983) · Zbl 0519.35010
[30] Shields, Sidney; Li, Jichun; Machorro, Eric A., Weak Galerkin methods for time-dependent Maxwell’s equations, Comput. Math. Appl., 74, 9, 2106-2124 (2017) · Zbl 1397.65192
[31] Wang, Chunmei; Wang, Junping, Discretization of div-curl systems by weak Galerkin finite element methods on polyhedral partitions, J. Sci. Comput., 68, 3, 1144-1171 (2016) · Zbl 1353.65125
[32] Wang, Junping; Ye, Xiu, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241, 103-115 (2013) · Zbl 1261.65121
[33] Wang, Junping; Ye, Xiu, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83, 289, 2101-2126 (2014) · Zbl 1308.65202
[34] Wang, Junping; Ye, Xiu, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42, 1, 155-174 (2016) · Zbl 1382.76178
[35] Wang, Xiuli; Zhai, Qilong; Zhang, Ran, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307, 13-24 (2016) · Zbl 1338.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.