×

Fractional \(q\)-difference equations on the half line. (English) Zbl 1538.39007

Summary: This article deals with some results about the existence of solutions and bounded solutions and the attractivity for a class of fractional \(q\)-difference equations. Some applications are made of Schauder fixed point theorem in Banach spaces and Darbo fixed point theorem in Fréchet spaces. We use some technics associated with the concept of measure of noncompactness and the diagonalization process. Some illustrative examples are given in the last section.

MSC:

39A13 Difference equations, scaling (\(q\)-differences)
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Abbas, S.; Benchohra, M., On the existence and local asymptotic stability of solutions of fractional order integral equations, Comment. Math. 52 (1) (2012), 91-100 · Zbl 1292.26015
[2] Abbas, S.; Benchohra, M., Existence and attractivity for fractional order integral equations in Fréchet spaces, Discuss. Math. Differ. Incl. Control Optim. 33 (1) (2013), 1-17 · Zbl 1307.34016
[3] Abbas, S.; Benchohra, M.; Diagana, T., Existence and attractivity results for some fractional order partial integro-differential equations with delay, Afr. Diaspora J. Math. 15 (2) (2013), 87-100 · Zbl 1282.26006
[4] Abbas, S.; Benchohra, M.; Graef, J. R.; Henderson, J., Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018 · Zbl 1390.34002
[5] Abbas, S.; Benchohra, M.; Henderson, J., Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras, Nonlinear Stud. 20 (1) (2013), 1-10 · Zbl 1305.45005
[6] Abbas, S.; Benchohra, M.; N’Guérékata, G. M., Topics in Fractional Differential Equations, Springer, New York, 2012 · Zbl 1273.35001
[7] Abbas, S.; Benchohra, M.; N’Guérékata, G. M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015 · Zbl 1314.34002
[8] Adams, C. R., In the linear ordinary \(q\)-difference equation, Annals Math. 30 (1928), 195-205 · JFM 55.0263.01 · doi:10.2307/1968274
[9] Agarwal, R., Certain fractional \(q\)- integrals and \(q\)-derivatives, Proc. Cambridge Philos. Soc. 66 (1969), 365-370 · Zbl 0179.16901
[10] Ahmad, B., Boundary value problem for nonlinear third order \(q\)-difference equations, Electron. J. Differential Equations 2011 (94) (2011), 1-7 · Zbl 1226.39003
[11] Ahmad, B.; Ntouyas, S. K.; Purnaras, L. K., Existence results for nonlocal boundary value problems of nonlinear fractional \(q\)-difference equations, Adv. Difference Equ. 2012 (2012), 14 pp · Zbl 1388.39003
[12] Almezel, S.; Ansari, Q. H.; Khamsi, M. A., Topics in Fixed Point Theory, Springer-Verlag, New York, 2014 · Zbl 1278.47002
[13] Benchohra, M.; Berhoun, F.; N’Guérékata, G. M., Bounded solutions for fractional order differential equations on the half-line, Bull. Math. Anal. Appl. 146 (4) (2012), 62-71 · Zbl 1314.34015
[14] Bothe, D., Multivalued perturbations of m-accretive differential inclusions, Israel J. Math. 108 (1998), 109-138 · Zbl 0922.47048 · doi:10.1007/BF02783044
[15] Carmichael, R. D., The general theory of linear \(q\)-difference equations, American J. Math. 34 (1912), 147-168 · JFM 43.0411.02 · doi:10.2307/2369887
[16] Corduneanu, C., Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973 · Zbl 0273.45001
[17] Dudek, S., Fixed point theorems in Fréchet Algebras and Fréchet spaces and applications to nonlinear integral equations, Appl. Anal. Discrete Math. 11 (2017), 340-357 · Zbl 1503.47075 · doi:10.2298/AADM1702340D
[18] Dudek, S.; Olszowy, L., Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter, J. Funct. Spaces (2015), 9 pp., Article ID 471235 · Zbl 1326.45001
[19] El-Shahed, M.; Hassa, H. A., Positive solutions of \({q}\)-difference equation, Proc. Amer. Math. Soc. 138 (2010), 1733-1738 · Zbl 1201.39003 · doi:10.1090/S0002-9939-09-10185-5
[20] Etemad, S.; Ntouyas, S. K.; Ahmad, B., Existence theory for a fractional \(q\)-integro-difference equation with \(q\)-integral boundary conditions of different orders, Mathematics 7 (2019), 1-15 · doi:10.3390/math7080659
[21] Granas, A.; Dugundji, J., Fixed Point Theory, Springer-Verlag, New York, 2003 · Zbl 1025.47002
[22] Kac, V.; Cheung, P., Quantum Calculus, Springer, New York, 2002 · Zbl 0986.05001
[23] Kilbas, A. A., Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (6) (2001), 1191-1204 · Zbl 1018.26003
[24] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006 · Zbl 1092.45003
[25] Mönch, H., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985-999 · Zbl 0462.34041 · doi:10.1016/0362-546X(80)90010-3
[26] Olszowy, L., Existence of mild solutions for the semilinear nonlocal problem in Banach spaces, Nonlinear Anal. 81 (2013), 211-223 · Zbl 1298.34107 · doi:10.1016/j.na.2012.11.001
[27] Rajkovic, P. M.; Marinkovic, S. D.; Stankovic, M. S., Fractional integrals and derivatives in \(q\)-calculus, Appl. Anal. Discrete Math. 1 (2007), 311-323 · Zbl 1199.33013 · doi:10.2298/AADM0701311R
[28] Rajkovic, P. M.; Marinkovic, S. D.; Stankovic, M. S., On \(q\)-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal. 10 (2007), 359-373 · Zbl 1157.33325
[29] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian · Zbl 0617.26004
[30] Tarasov, V. E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010 · Zbl 1214.81004
[31] Tenreiro Machado, J. A.; Kiryakova, V., The chronicles of fractional calculus, Fract. Calc. Appl. Anal. 20 (2017), 307-336 · Zbl 1364.26002
[32] Zhou, Y., Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014 · Zbl 1336.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.