×

Local existence of weak solutions to kinetic Cucker-Smale-Fokker-Planck equation with singular commutation weights. (English) Zbl 1538.35390

Summary: In this paper, we investigate the Cauchy problem of the \(d\) dimensional kinetic Cucker-Smale-Fokker-Planck equation with singular communication weight behaving like \(O(|x|)^{-\alpha})\) as \(x\to 0\). First, local existence of weak solutions with finite kinetic energy is established for \(0<\alpha <1\) if \(d=1\) and \(0<\alpha <2\) if \(d\ge 2\). Second, for \(0<\alpha <d\), we show that any initial datum with finite velocity moment of order \(\ge d\) launches a weak solution that propagates the initial velocity moment.
{© 2023 John Wiley & Sons, Ltd.}

MSC:

35Q84 Fokker-Planck equations
35D30 Weak solutions to PDEs
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] HaS‐Y, JeongJ, NohS‐E, XiaoQ, ZhangX. Emergent dynamics of Cucker‐Smale flocking particles in a random environment. J Differ Equ. 2017;262:2554‐2591. · Zbl 1352.74014
[2] PeszekJ. Discrete Cucker‐Smale flocking model with a weakly singular weight. SIAM J Math Anal. 2015;47:3671‐3686. · Zbl 1350.92062
[3] CuckerF, SmaleS. On the mathematics of emergence. Jpn J Math. 2007;2:197‐227. · Zbl 1166.92323
[4] CuckerF, SmaleS. Emergent behavior in flocks. IEEE Trans Automat Control. 2007;52:852‐862. · Zbl 1366.91116
[5] HaS‐Y, LiuJ‐G. A simple proof of the Cucker‐Smale flocking dynamics and mean‐field limit. Commun Math Sci. 2009;7:297‐325. · Zbl 1177.92003
[6] CarrilloJA, ChoiY‐P, HaurayM. Local well‐posedness of the generalized Cucker‐Smale model with singular kernels. ESAIM: Proc Surv. 2014;47:17‐35. · Zbl 1356.35252
[7] CarrilloJA, FornasierM, RosadoJ, ToscaniG. Asymptotic flocking dynamics for the kinetic Cucker‐Smale model. SIAM J Math Anal. 2010;42:218‐236. · Zbl 1223.35058
[8] ChenZ, YinX. The kinetic Cucker‐Smale model: Well‐posedness and asymptotic behavior. SIAM J Math Anal. 2019;51:3819‐3853. · Zbl 1423.35034
[9] DuanR, FornasierM, ToscaniG, A kinetic flocking model with diffusion. Comm Math Phys. 2010;300:95‐145. · Zbl 1213.35395
[10] HaS‐Y, KimJ, PicklP, ZhangX. A probabilistic approach for the mean‐field limit to the Cucker‐Smale model with a singular communication. Kinet Relat Models. 2019;12:1045‐1067. · Zbl 1421.70024
[11] HaS‐Y, TadmorE. From particle to kinetic and hydrodynamic descriptions of flocking. Kinet Relat Models. 2008;1:415‐435. · Zbl 1402.76108
[12] KarperT, MelletA, TrivisaK. Existence of weak solutions to kinetic flocking models. SIAM J Math Anal. 2013;45:215‐243. · Zbl 1295.35371
[13] MinakowskiP, MuchaPB, PeszekJ, ZatorskaE. Singular Cucker‐Smale dynamics. Active particles, Model. Simul. Sci. Eng. Technol., vol. 2. Cham: Birkhäuser/Springer; 2019:201‐243. · Zbl 1461.76513
[14] ZhangX, ZhuT. Complete classification of the asymptotical behavior for singular C‐S Model on the real line. J Differ Equ. 2020;269:201‐256. · Zbl 1460.70015
[15] BouchutF. Existence and uniqueness of a global smooth solution for the Vlasov‐Poisson‐Fokker‐Planck system in three dimensions. J Funct Anal. 1993;111:239‐258. · Zbl 0777.35059
[16] BouchutF. Smoothing effect for the non‐linear Vlasov‐Poisson‐Fokker‐Planck system in three dimensions. J Differ Equ. 1995;122:225‐238. · Zbl 0840.35053
[17] BouchutF, DolbeaultJ. On long time asymptotics of the Vlasov‐Fokker‐Planck equation and of the Vlasov‐Poisson‐Fokker‐Planck system with coulombic and newtonian potentials. Differ Integral Equ. 1995;8:487‐514. · Zbl 0830.35129
[18] CañizoJA, CarrilloJA, RosadoJ. A well‐posedness theory in measures for some kinetic models of collective motion. Math Models Methods Appl Sci. 2011;21:515‐539. · Zbl 1218.35005
[19] CarpioA. Long‐time behaviour for solutions of the Vlasov‐Poisson‐Fokker‐Planck Equation. Math Methods Appl Sci. 1998;21:985‐1014. · Zbl 0911.35090
[20] CarrilloJA, FornasierM, ToscaniG, VecilF. Particle, kinetic, and hydrodynamic models of swarming, in Mathematical modeling of collective behavior in socio‐economic and life sciences, Model. Simul. Sci. Eng. Technol.Boston: Birkhuser Boston, Inc; 2010;297‐336. · Zbl 1211.91213
[21] CarrilloJA, RosadoJ. Uniqueness of Bounded Solutions to Aggregation Equations by Optimal Transport Methods European Congress of Mathematics, Vol. 3‐16. Zürich: Eur. Math. Soc.; 2010.
[22] CarrilloJA, SolerJ, VázquezJ. Asymptotic behaviour and self‐similarity for the three‐dimensional Vlasov‐Poisson‐Fokker‐Planck system. J Funct Anal. 1996;141:99‐132. · Zbl 0873.35066
[23] DegondP. Global existence of smooth solutions for the Vlasov‐Fokker‐Planck equation in 1 and 2 space dimensions. Ann Sci Éc Norm Supér. 1986;19:519‐542. · Zbl 0619.35087
[24] HerauF, NierF. Isotropic hypoellipticity and trend to equilibrium for the Fokker‐Planck equation with a high‐degree potential. Arch Ration Mech Anal. 2004;171:151‐218. · Zbl 1139.82323
[25] HwangHJ, JangJ. On the Vlasov‐Poisson‐Fokker‐Planck equation near Maxwellian. Discrete Contin Dyn Syst Ser B. 2013;18:681‐691. · Zbl 1277.35327
[26] HwangHJ, JangJ, JungJ. On the kinetic Fokker‐Planck equation in a half‐space with absorbing barriers. Indiana Univ Math J. 2015;64:1767‐1804. · Zbl 1343.35233
[27] OnoK, StraussWA. Regular solutions of the Vlasov‐Poisson‐Fokker‐Planck system. Discrete Contin Dyn Syst. 2000;6:751‐772. · Zbl 1034.82058
[28] TrioloL. Global existence for the Vlasov‐Poisson‐Fokker‐Planck equations in many dimensions for small data. Math Methods Appl Sci. 1988;10:487‐497. · Zbl 0699.35239
[29] CastellaF. Propagation of space moments in the Vlasov‐Poisson equation and further results. Ann Inst H Poincaré Anal Non Linéaire. 1999;16:503‐533. · Zbl 1011.35034
[30] LionsPL, PerthameB. Propagation of moments and regularity for the 3‐dimensional Vlasov‐Poisson system. Invent Math. 1991;105:415‐430. · Zbl 0741.35061
[31] PallardC. Moment propagation for weak solutions to the Vlasov‐Poisson system. Comm Partial Differ Equ. 2012;37:1273‐1285. · Zbl 1387.76115
[32] PallardC. Space moments of the Vlasov‐Poisson system: propagation and regularity. SIAM J Math Anal. 2014;46:1754‐1770. · Zbl 1298.76241
[33] PerthameB, decayTime. Propagation of lowmoments and dispersive effects for kinetic equations. Comm Partial Differ Equ. 1996;21:659‐686. · Zbl 0852.35139
[34] DiPernaRJ, LionsPL. On the Fokker‐Planck‐Boltzmann equation. Comm Math Phys. 1988;120:1‐23. · Zbl 0671.35068
[35] DiPernaRJ, LionsPL. Global weak solutions of Vlasov‐Maxwell systems. Comm Pure Appl Math. 1989;42:729‐757. · Zbl 0698.35128
[36] ZhangX. On the Cauchy problem of the Vlasov‐Poisson‐BGK system: global existence of weak solutions. J Stat Phys. 2010;141:566‐588. · Zbl 1206.82079
[37] HorstE. On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation, II. Math Methods Appl Sci. 1982;4:19‐32. · Zbl 0485.35079
[38] ReinG. Collisionless Kinetic Equation from Astrophysics—The Vlasov‐Poisson System, Handb. Differ. Equ., Evolutionary Equations, vol. 3: Elsevier; 2007.
[39] LiebE, LossM. Analysis, Grad. Stud. Math.Providence, Rhode Island: AMS; 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.