×

Nonlinear spin dynamics of a couple of nonlinear Schrödinger’s equations by the improved form of an analytical method. (English) Zbl 1538.35343

Summary: Here, different optical soliton wave solutions for a couple of nonlinear Schrödinger’s equations (NLSEs), namely, the nonlinear spin dynamics of Heisenberg ferromagnetic spin chains (HFSC) and the dynamics of modulated compressional dispersive alfven (CDA) are considered that describe the magnetic ordering in ferromagnetic materials and CDA waves produced in plasma physics. Hydromagnetics waves represent a key role to investigate electromagnetic disturbances in magnetized space. This equation is analysed utilizing one powerful integration tool, namely, the improved form of \(\exp(-\Omega(\eta))\) function technique. It can be said that a couple of nonlinear Schrödinger’s equations exist different dynamical behaviours. Finally, via symbolic computation, their dynamic structure and physical properties were vividly shown by two and three-dimensional plots and density plot.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
82D40 Statistical mechanics of magnetic materials
82D10 Statistical mechanics of plasmas
68W30 Symbolic computation and algebraic computation
78A30 Electro- and magnetostatics
Full Text: DOI

References:

[1] Achar, B. N.N.; Yale, B. T.; Hanneken, J. W., Time fractional Schrodinger equation revisited, Adv. Math. Phys., 2013 (2013) · Zbl 1292.81031 · doi:10.1155/2013/290216
[2] Al-Amr, M. O.; El-Ganaini, S., New exact traveling wave solutions of the (4 + 1)-dimensional Fokas equation, Comput. Math. Appl., 74, 1274-1287 (2017) · Zbl 1394.35396
[3] Ali, I.; Rizvi, S. T.R.; Abbas, S. O.; Zhou, Q., Optical solitons for modulated compressional dispersive Alfven and Heisenberg ferromagnetic spin chains, Results Phys., 15 (2019)
[4] Baskonus, H. M.; Bulut, H., Exponential prototype structures for (2 + 1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Waves Random Complex Media, 26, 201-208 (2016) · Zbl 1378.35062
[5] Baskonus, H. M.; Koç, D. A.; Bulut, H., New travelling wave prototypes to the nonlinear Zakharov-Kuznetsov equation with power law nonlinearity, Nonlinear Sci. Lett. A, 7, 67-76 (2016)
[6] Biswas, A.; Khan, K. R.; Mahmood, M. F.; Belic, M., Bright and dark solitons in optical metamaterials, Optik, 125, 3299-3302 (2014)
[7] Biswas, A.; Mirzazadeh, M.; Savescu, M.; Milovic, D.; Khan, K. R.; Mahmood, M. F.; Belic, M., Singular solitons in optical metamaterials by ansatz method and simplest equation approach, J. Modern Opt., 61, 1550-1555 (2014)
[8] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differential Equations J., 26, 448-479 (2010) · Zbl 1185.65187
[9] Dehghan, M.; Manafian, J.; Saadatmandi, A., Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int. J. Num. Meth. Heat Fluid Flow, 21, 736-753 (2011)
[10] Dong, B.; Wang, W., High-order multiscale discontinuous Galerkin methods for the one-dimensional stationary Schrodinger equation, J. Comput. Appl. Math., 38015 (2020) · Zbl 1455.65120
[11] El-Ganaini, S. I.A., New exact solutions of some nonlinear systems of partial differential equations using the first integral method, Abs. Appl. Anal., 2013 (2013) · Zbl 1291.35281
[12] El-Ganaini, S. I.A., The first integral method to the nonlinear Schrodinger equations in higher dimensions, Abs. Appl. Anal., 2013 (2013) · Zbl 1308.35048 · doi:10.1155/2013/349173
[13] El-Ganaini, S., Solutions of some class of nonlinear PDEs in mathematical physics, J. Egyptian Math. Soc., 24, 2, 214-219 (2016) · Zbl 1339.35072
[14] El-Ganaini, S. I.A., Solitons and other solutions to a new coupled nonlinear Schrodinger type equation, J. Egyptian Math. Soc., 25, 1, 19-27 (2017) · Zbl 1364.35331
[15] El-Ganaini, S.; Al-Amr, M. O., New abundant wave solutions of the conformable space-time fractional (4 + 1)-dimensional Fokas equation in water waves, Comput. Math. Appl., 78, 2094-2106 (2019) · Zbl 1442.35507
[16] El-Ganaini, S.; Kumar, H., A variety of new traveling and localized solitary wave solutions of a nonlinear model describing the nonlinear low-pass electrical transmission lines, Chaos Solitons Frac., 140 (2020) · Zbl 1495.35163
[17] El-Ganaini, S.; Zayed, E. M.E., Short comment on the extended simplest equation method and the \((####)\)-expansion method, Optik, 206 (2020)
[18] El-Ganaini, S. I.A.; Mirzazadeh, M.; Biswas, A., Solitons and other solutions to long-short wave resonance equation, Appl. Comput. Math., 14, 248-259 (2015) · Zbl 1329.35247
[19] Guo, Q.; Liu, J., New exact solutions to the nonlinear Schrodinger equation with variable coefficients, Results Phys., 16 (2020)
[20] Hamed, A. A.; Abdel Kader, A. H.; Abdel Latif, M. S., Solitons, rogue waves and breather solutions for the (2 + 1)-dimensional nonlinear Schrödinger equation with variable coefficients, Optik, 216 (2020)
[21] He, Y.; Lin, X., Numerical analysis and simulations for coupled nonlinear Schrodinger equations based on lattice Boltzmann method, Appl. Math. Lett., 106 (2020) · Zbl 1439.65128
[22] Hosseini, K.; Matinfar, M.; Mirzazadeh, M., A (3 + 1)-dimensional resonant nonlinear Schrodinger equation and its Jacobi elliptic and exponential function solutions, Optik, 207 (2020)
[23] Ilhan, O. A.; Manafian, J.; Shahriari, M., Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation, Comput. Math. Appl., 78, 8, 2429-2448 (2019) · Zbl 1443.35128
[24] Inc, M.; Aliyu, A. I.; Yusuf, A.; Baleanu, D., Optical solitary waves, conservation laws and modulation instability analysis to nonlinear Schrödinger’s equations in compressional dispersive Alfvan waves, Optik, 155, 257-266 (2018)
[25] Khan, K.; Akbar, M. A., The \(####\)-expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation, Int. J. Dyn. System Dif. Eq., 5, 1, 72-83 (2014) · Zbl 1331.35072
[26] Kruglov, V. I., Solitary wave and periodic solutions of nonlinear Schrodinger equation including higher order dispersions, Opt. Commun., 4721 (2020)
[27] Kumar, V., Modified \((####)\)-expansion method for finding traveling wave solutions of the coupled Benjamin-Bona-Mahony-KdV equation, J. Ocean Eng. Sci., 4, 252-255 (2019)
[28] Kumar, H.; El-Ganaini, S., Traveling and localized solitary wave solutions of the nonlinear electrical transmission line model equation, Eur. Phys. J. Plus, 135, 749 (2020)
[29] Latha, M. M.; Christal, V. C., An integrable model of (2 + 1)-dimensional Heisenberg ferromagnetic spin chain and soliton excitations, Phys. Scr., 89 (2014)
[30] Li, H.; Guo, Y., Numerical solution of coupled nonlinear Schrodinger equations on unbounded domains, Appl. Math. Lett., 104 (2020) · Zbl 1437.65105
[31] Liu, X.; Luan, Z.; Zhou, Q.; Liu, W.; Biswas, A., Dark two-soliton solutions for nonlinear Schrodinger equations in inhomogeneous optical fibers, Chinese J. Phys., 61, 310-315 (2019) · Zbl 07824995
[32] Ma, Y. L.; Li, B. Q.; Fu, Y. Y., A series of the solutions for the Heisenberg ferromagnetic spin chain equation, Math. Meth. Appl. Sci., 41, 3316-3322 (2018) · Zbl 1394.35507
[33] Manafian, J., Optical soliton solutions for Schrödinger type nonlinear evolution equations by the \(####\)-expansion method, Optik Int. J. Elec. Opt., 127, 4222-4245 (2016)
[34] Manafian, J., Novel solitary wave solutions for the (3 + 1)-dimensional extended Jimbo-Miwa equations, Comput. Math. Appl., 76, 5, 1246-1260 (2018) · Zbl 1427.35236
[35] Manafian, J., An optimal Galerkin-homotopy asymptotic method applied to the nonlinear second-order BVPs, Proc. Inst. Math. Mech., 47, 156-182 (2021) · Zbl 1474.65263
[36] Manafian, J.; Allahverdiyeva, N., An analytical analysis to solve the fractional differential equations, Adv. Math. Models Appl., 6, 128-161 (2021)
[37] Manafian, J.; Lakestani, M., Lump-type solutions and interaction phenomenon to the bidirectional Sawada-Kotera equation, Pramana, 92, 41 (2019)
[38] Manafian, J.; Mohammadi Ivatlo, B.; Abapour, M., Lump-type solutions and interaction phenomenon to the (2 + 1)-dimensional breaking soliton equation, Appl. Math. Comput., 13, 13-41 (2019) · Zbl 1428.35462
[39] Nasreen, N.; Seadawy, A. R.; Lu, D.; Albarakati, W. A., Dispersive solitary wave and soliton solutions of the gernalized third order nonlinear Schrodinger dynamical equation by modified analytical method, Results Phys., 15 (2019)
[40] Rana, J.; Liao, S., On time independent Schrodinger equations in quantum mechanics by the homotopy analysis method, Theo. Appl. Mech. Let., 9, 376-381 (2019)
[41] Rayhanul Islam, S. M.; Khan, K.; Akbar, M. A., Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations, Springer Plus, 4, 124 (2015)
[42] Sadighi, A.; Ganji, D. D., Analytic treatment of linear and nonlinear Schrodinger equations: A study with homotopy-perturbation and Adomian decomposition methods, Phys. Let. A, 372, 421, 465-469 (2008) · Zbl 1217.81069
[43] Seadawy, A. R.; Manafian, J., New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod, Results Phys., 8, 1158-1167 (2018)
[44] Sulaiman, T. A.; Nuruddeen, R. I.; Zerrad, E.; Mikail, B. B., Dark and singular solitons to the two nonlinear Schrödinger’s equations, Optik, 186, 423-430 (2019)
[45] Zayed, E. M.E.; Abdelaziz, M. A.M., Travelling wave solutions for the Burgers equation and the Korteweg-de Vries equation with variable coefficients using the generalized \((####)\)-expansion method, Z. Naturforschung A, 65a, 1065-1070 (2010)
[46] Zayed, E. M.E.; Abdelaziz, M. A.M., Applications of a generalized extended \((####)\)-expansion method to find exact solutions of two nonlinear Schrodinger equations with variable coefficients, Acta Phys. Polonica A, 121, 573-580 (2012)
[47] Zayed, E. M.E.; Al-Nowehy, A. G., Exact solutions for nonlinear foam drainage equation, Indian J. Phys., 91, 209-218 (2017)
[48] Zayed, E. M.E.; Gepreel, K. A., Some applications of the \(####\)-expansion method to non-linear partial differential equations, Appl. Math. Comput., 212, 1-13 (2009) · Zbl 1166.65386
[49] Zayed, E. M.E.; Gepreel, K. A., Three types of traveling wave solutions for nonlinear evolution equations using the \((####)\)-expansion method, Int. J. Nonlinear Sci., 7, 501-512 (2009) · Zbl 1394.35455
[50] Zayed, E. M.E.; Gepreel, K. A., New applications of an improved \((####)\)-expansion method to construct the exact solutions of nonlinear pdes, Int. J. Nonlinear Sci. Numer. Simul., 11, 273-283 (2010) · Zbl 1401.35020
[51] Zayed, E. M.E.; Shohib, R. M.A., Short comment on \(####\)-expansion method, Optik, 204 (2020)
[52] Zhou, Q., Optical solitons in medium with parabolic law nonlinearity and higher order dispersion, Waves Random Complex Media, 25, 52-59 (2016) · Zbl 1375.35076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.