×

Chaos, periodic structures, and multistability: complex dynamical behaviors of an eco-epidemiological model in parameter planes. (English) Zbl 1537.92079


MSC:

92D25 Population dynamics (general)
92D40 Ecology
92D30 Epidemiology
39A28 Bifurcation theory for difference equations
39A30 Stability theory for difference equations
39A33 Chaotic behavior of solutions of difference equations
Full Text: DOI

References:

[1] Marcstrom, V.; Kenward, R. E.; Engren, E., The impact of predation on boreal tetraonids during vole cycles: An experimental study, J. Anim. Ecol., 57, 859-872 (1988) · doi:10.2307/5097
[2] Hubbs, A. H.; Boonstra, R., Population limitation in Arctic ground squirrels: Effects of food and predation, J. Anim. Ecol., 66, 527-541 (1997) · doi:10.2307/5947
[3] Freedman, H. I.; Wolkowicz, G. S. K., Predator-prey systems with group defence: The paradox of enrichment revisited, Bull. Math. Biol., 48, 493-508 (1986) · Zbl 0612.92017 · doi:10.1007/BF02462320
[4] Hastings, A.; Powell, T., Chaos in a three-species food chain, Ecology, 72, 896-903 (1991) · doi:10.2307/1940591
[5] Wang, X.; Zou, X., Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol., 79, 1325-1359 (2017) · Zbl 1372.92095 · doi:10.1007/s11538-017-0287-0
[6] Panday, P.; Pal, N.; Samanta, S.; Chattopadhyay, J., Stability and bifurcation analysis of a three-species food chain model with fear, Int. J. Bifurcation Chaos, 28, 1850009 (2018) · Zbl 1386.34093 · doi:10.1142/S0218127418500098
[7] Martcheva, M., An Introduction to Mathematical Epidemiology (2015), Springer: Springer, New York · Zbl 1333.92006
[8] Chen, Y.; Evans, J.; Feldlaufer, M., Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera, J. Invertebr. Pathol., 92, 152-159 (2006) · doi:10.1016/j.jip.2006.03.010
[9] Li, M. Y.; Smith, H. L.; Wang, L., Global dynamics of an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., 62, 58-69 (2001) · Zbl 0991.92029 · doi:10.1137/S0036139999359860
[10] Daley, D. J.; Gani, J., Epidemic Modelling: An Introduction (2001), Cambridge University Press: Cambridge University Press, New York · Zbl 0964.92035
[11] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115, 700-721 (1927) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[12] Kermack, W. O.; McKendrick, A. G., Contributions to the mathematical theory of epidemics-I. 1927, Bull. Math. Biol., 53, 33-55 (1991) · Zbl 0005.30501 · doi:10.1007/BF02464423
[13] Hethcote, H. W., Three basic epidemiological models, Appl. Math. Ecol., 18, 119-144 (1989) · doi:10.1007/978-3-642-61317-3_5
[14] Chattopadhyay, J.; Arino, O., A predator-prey model with disease in the prey, Nonlinear Anal., 36, 747-766 (1999) · Zbl 0922.34036 · doi:10.1016/S0362-546X(98)00126-6
[15] Hossain, M.; Pal, N.; Samanta, S., Impact of fear on an eco-epidemiological model, Chaos Soliton. Fract., 134, 109718 (2020) · Zbl 1483.92133 · doi:10.1016/j.chaos.2020.109718
[16] Venturino, E., Ecoepidemiology 15 years later: A survey, AIP Conf. Proc., 936, 31-34 (2007) · Zbl 1152.91301 · doi:10.1063/1.2790140
[17] Hurst, C. J., The Connections Between Ecology and Infectious Disease (2018), Springer: Springer, New York
[18] Krebs, J. R., Optimal foraging: Decision rules for predators, Behavioral Ecology: An Evolutionary Approach, 23-63 (1978), Blackwell Scientific Publications: Blackwell Scientific Publications, Oxford, UK
[19] Temple, S. A., Do predators always capture substandard individuals disproportionately from prey populations?, Ecology, 68, 669-674 (1987) · doi:10.2307/1938472
[20] Hudson, P. J.; Dobson, A. P.; Newborn, D., Do parasites make prey vulnerable to predation? Red grouse and parasites, J. Anim. Ecol., 61, 681-692 (1992) · doi:10.2307/5623
[21] Holmes, J., Modification of intermediate host behaviour by parasites, Behav. Aspects Parasite Transm., 51, 123-149 (1972)
[22] Chattopadhyay, J.; Bairagi, N., Pelicans at risk in Salton Sea—An eco-epidemiological model, Ecol. Modell., 136, 103-112 (2001) · doi:10.1016/S0304-3800(00)00350-1
[23] Chattopadhyay, J.; Srinivasu, P. D. N.; Bairagi, N., Pelicans at risk in Salton Sea—An eco-epidemiological model-II, Ecol. Modell., 167, 199-211 (2003) · doi:10.1016/S0304-3800(03)00187-X
[24] Kabata, Z., Parasites and Diseases of Fish Cultured in the Tropics (1985), Taylor & Francis Ltd.: Taylor & Francis Ltd., London
[25] Peterson, R. O.; Page, R. E., The rise and fall of Isle Royale wolves, 1975-1986, J. Mammal., 69, 89-99 (1988) · doi:10.2307/1381751
[26] Moore, J., Parasites and the Behavior of Animals (2002), Oxford University Press on Demand: Oxford University Press on Demand, New York
[27] Packer, C.; Holt, R. D.; Hudson, P. J.; Lafferty, K. D.; Dobson, A. P., Keeping the herds healthy and alert: Implications of predator control for infectious disease, Ecol. Lett., 6, 797-802 (2003) · doi:10.1046/j.1461-0248.2003.00500.x
[28] Pulkkinen, K.; Ebert, D., Persistence of host and parasite populations subject to experimental size-selective removal, Oecologia, 149, 72-80 (2006) · doi:10.1007/s00442-006-0433-0
[29] Hudson, P. J.; Dobson, A. P.; Newborn, D., Prevention of population cycles by parasite removal, Science, 282, 2256-2258 (1998) · doi:10.1126/science.282.5397.2256
[30] Choisy, M.; Rohani, P., Harvesting can increase severity of wildlife disease epidemics, Proc. R. Soc. B: Biol. Sci., 273, 2025-2034 (2006) · doi:10.1098/rspb.2006.3554
[31] May, R. M., Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos, Science, 186, 645-647 (1974) · doi:10.1126/science.186.4164.645
[32] May, R. M.; Oster, G. F., Bifurcations and dynamic complexity in simple ecological models, Am. Nat., 110, 573-599 (1976) · doi:10.1086/283092
[33] Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Liao, M.; Li, P.; Yao, L.; Qin, Q., Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks, Nonlinear Anal.: Modell. Control, 27, 1-24 (2022) · Zbl 1507.34080 · doi:10.15388/namc.2022.27.28491
[34] Ou, W.; Xu, C.; Cui, Q.; Liu, Z.; Pang, Y.; Farman, M.; Ahmad, S.; Zeb, A., Mathematical study on bifurcation dynamics and control mechanism of tri-neuron bidirectional associative memory neural networks including delay, Math. Methods Appl. Sci. · doi:10.1002/mma.9347
[35] Xu, C.; Mu, D.; Pan, Y.; Aouiti, C.; Yao, L., Exploring bifurcation in a fractional-order predator-prey system with mixed delays, J. Appl. Anal. Comput., 13, 1119-1136 (2023) · Zbl 07920365 · doi:10.11948/20210313
[36] Huang, C.; Wang, J.; Chen, X.; Cao, J., Bifurcations in a fractional-order BAM neural network with four different delays, Neural Networks, 141, 344-354 (2021) · Zbl 1525.34114 · doi:10.1016/j.neunet.2021.04.005
[37] Xu, C.; Liu, Z.; Li, P.; Yan, J.; Yao, L., Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett. · doi:10.1007/s11063-022-11130-y
[38] Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Liao, M.; Aouiti, C., New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays, Commun. Nonlinear Sci. Numer. Simul., 118, 107043 (2023) · Zbl 1514.34122 · doi:10.1016/j.cnsns.2022.107043
[39] Xu, C.; Zhang, W.; Aouiti, C.; Liu, Z.; Yao, L., Bifurcation insight for a fractional-order stage-structured predator-prey system incorporating mixed time delays, Math. Methods Appl. Sci., 46, 9103-9118 (2023) · Zbl 1527.34115 · doi:10.1002/mma.9041
[40] Aguirre, P.; González-Olivares, E.; Torres, S., Stochastic predator-prey model with Allee effect on prey, Nonlinear Anal.: Real World Appl., 14, 768-779 (2013) · Zbl 1263.92043 · doi:10.1016/j.nonrwa.2012.07.032
[41] Zhang, Y.; Gao, S.; Chen, S., A stochastic predator-prey eco-epidemiological model with the fear effect, Appl. Math. Lett., 134, 108300 (2022) · Zbl 1498.92185 · doi:10.1016/j.aml.2022.108300
[42] Anderson, R. M.; May, R. M., Population biology of infectious diseases: Part I, Nature, 280, 361-367 (1979) · doi:10.1038/280361a0
[43] Xiao, Y.; Chen, L., Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171, 59-82 (2001) · Zbl 0978.92031 · doi:10.1016/S0025-5564(01)00049-9
[44] Haque, M., A predator-prey model with disease in the predator species only, Nonlinear Anal.: Real World Appl., 11, 2224-2236 (2010) · Zbl 1197.34074 · doi:10.1016/j.nonrwa.2009.06.012
[45] Upadhyay, R. K.; Bairagi, N.; Kundu, K.; Chattopadhyay, J., Chaos in eco-epidemiological problem of the Salton Sea and its possible control, Appl. Math. Comput., 196, 392-401 (2008) · Zbl 1131.92070 · doi:10.1016/j.amc.2007.06.007
[46] Siekmann, I.; Malchow, H.; Venturino, E., On competition of predators and prey infection, Ecol. Complex., 7, 446-457 (2010) · doi:10.1016/j.ecocom.2009.10.005
[47] Hossain, M.; Garai, S.; Jafari, S.; Pal, N., Bifurcation, chaos, multistability, and organized structures in a predator-prey model with vigilance, Chaos, 32, 063139 (2022) · Zbl 07874290 · doi:10.1063/5.0086906
[48] Garai, S.; Karmakar, S.; Jafari, S.; Pal, N., Coexistence of triple, quadruple attractors and Wada basin boundaries in a predator-prey model with additional food for predators, Commun. Nonlinear Sci. Numer. Simul., 121, 107208 (2023) · Zbl 1512.92067 · doi:10.1016/j.cnsns.2023.107208
[49] Pati, N. C.; Garai, S.; Hossain, M.; Layek, G. C.; Pal, N., Fear induced multistability in a predator-prey model, Int. J. Bifurcation Chaos, 31, 2150150 (2021) · Zbl 1475.37103 · doi:10.1142/S0218127421501509
[50] Hu, Z.; Teng, Z.; Jia, C.; Zhang, L.; Chen, X., Complex dynamical behaviors in a discrete eco-epidemiological model with disease in prey, Adv. Differ. Equ., 2014, 1-19 (2014) · Zbl 1344.92167 · doi:10.1186/1687-1847-2014-265
[51] Hu, Z.; Teng, Z.; Zhang, T.; Zhou, Q.; Chen, X., Globally asymptotically stable analysis in a discrete time eco-epidemiological system, Chaos Soliton. Fract., 99, 20-31 (2017) · Zbl 1373.92103 · doi:10.1016/j.chaos.2017.03.042
[52] Din, Q.; Ishaque, W., Bifurcation analysis and chaos control in discrete-time eco-epidemiological models of pelicans at risk in the Salton Sea, Int. J. Dyn. Control, 8, 132-148 (2020) · doi:10.1007/s40435-019-00508-x
[53] Biswas, M.; Bairagi, N., Discretization of an eco-epidemiological model and its dynamic consistency, J. Differ. Equ. Appl., 23, 860-877 (2017) · Zbl 1377.92081 · doi:10.1080/10236198.2017.1304544
[54] Lafferty, K. D.; Morris, A. K., Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts, Ecology, 77, 1390-1397 (1996) · doi:10.2307/2265536
[55] Han, L.; Ma, Z.; Hethcote, H. W., Four predator prey models with infectious diseases, Math. Comput. Modell., 34, 849-858 (2001) · Zbl 0999.92032 · doi:10.1016/S0895-7177(01)00104-2
[56] Manchein, C.; Santana, L.; da Silva, R. M.; Beims, M. W., Noise-induced stabilization of the Fitzhugh-Nagumo neuron dynamics: Multistability and transient chaos, Chaos, 32, 083102 (2022) · Zbl 07876544 · doi:10.1063/5.0086994
[57] Arnold, V. I., Small denominators, I: Mappings of the circumference into itself, AMS Trans. Ser. 2, 46, 213 (1965) · Zbl 0152.41905
[58] Shen, Y.; Zhang, Y., Strange nonchaotic attractors in a quasiperiodically-forced piecewise smooth system with Farey tree, Fractals, 27, 1950118 (2019) · doi:10.1142/S0218348X19501184
[59] Wang, F.; Cao, H., Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model, Commun. Nonlinear Sci. Numer. Simul., 56, 481-489 (2018) · Zbl 1510.92053 · doi:10.1016/j.cnsns.2017.08.027
[60] Glass, L.; Guevara, M. R.; Belair, J.; Shrier, A., Global bifurcations of a periodically forced biological oscillator, Phys. Rev. A, 29, 1348 (1984) · doi:10.1103/PhysRevA.29.1348
[61] de Souza, S. L. T.; Lima, A. A.; Caldas, I. L.; Medrano-T, R. O.; Guimarães-Filho, Z. O., Self-similarities of periodic structures for a discrete model of a two-gene system, Phys. Lett. A, 376, 1290-1294 (2012) · Zbl 1260.37060 · doi:10.1016/j.physleta.2012.02.036
[62] Bonatto, C.; Gallas, J. A. C., Accumulation boundaries: Codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 366, 505-517 (2008) · Zbl 1153.78324 · doi:10.1098/rsta.2007.2107
[63] Gallas, J. A. C., Dissecting shrimps: Results for some one-dimensional physical models, Physica A, 202, 196-223 (1994) · doi:10.1016/0378-4371(94)90174-0
[64] Zou, Y.; Thiel, M.; Romano, M. C.; Kurths, J.; Bi, Q., Shrimp structure and associated dynamics in parametrically excited oscillators, Int. J. Bifurcation Chaos, 16, 3567-3579 (2006) · Zbl 1117.37027 · doi:10.1142/S0218127406016987
[65] De Oliveira, J. A.; Montero, L. T.; Da Costa, D. R.; Méndez-Bermúdez, J. A.; Medrano-T, R. O.; Leonel, E. D., An investigation of the parameter space for a family of dissipative mappings, Chaos, 29, 053114 (2019) · doi:10.1063/1.5048513
[66] Zou, Y.; Donner, R. V.; Donges, J. F.; Marwan, N.; Kurths, J., Identifying complex periodic windows in continuous-time dynamical systems using recurrence-based methods, Chaos, 16, 285 (1985) · doi:10.1063/1.3523304
[67] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.-M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory, Meccanica, 15, 9-20 (1980) · Zbl 0488.70015 · doi:10.1007/BF02128236
[68] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[69] Foss, J.; Longtin, A.; Mensour, B.; Milton, J., Multistability and delayed recurrent loops, Phys. Rev. Lett., 76, 708 (1996) · doi:10.1103/PhysRevLett.76.708
[70] Brovkin, V.; Claussen, M.; Petoukhov, V.; Ganopolski, A., On the stability of the atmosphere-vegetation system in the Sahara/Sahel region, J. Geophys. Res.: Atmos., 103, 31613-31624 (1998) · doi:10.1029/1998JD200006
[71] Scheffer, M.; Carpenter, S.; Foley, J. A.; Folke, C.; Walker, B., Catastrophic shifts in ecosystems, Nature, 413, 591-596 (2001) · doi:10.1038/35098000
[72] Shiau, Y.-H.; Peng, Y.-F.; Hwang, R. R.; Hu, C.-K., Multistability and symmetry breaking in the two-dimensional flow around a square cylinder, Phys. Rev. E, 60, 6188 (1999) · doi:10.1103/PhysRevE.60.6188
[73] Ganapathisubramanian, N.; Showalter, K., Bistability, mushrooms, and isolas, J. Chem. Phys., 80, 4177-4184 (1984) · doi:10.1063/1.447246
[74] Xie, J.; Sreenivasan, S.; Korniss, G.; Zhang, W.; Lim, C.; Szymanski, B. K., Social consensus through the influence of committed minorities, Phys. Rev. E, 84, 011130 (2011) · doi:10.1103/PhysRevE.84.011130
[75] Scheffer, M.; Carpenter, S. R., Catastrophic regime shifts in ecosystems: Linking theory to observation, Trends Ecol. Evol., 18, 648-656 (2003) · doi:10.1016/j.tree.2003.09.002
[76] Schröder, A.; Persson, L.; De Roos, A. M., Direct experimental evidence for alternative stable states: A review, Oikos, 110, 3-19 (2005) · doi:10.1111/j.0030-1299.2005.13962.x
[77] Ott, E., Chaos in Dynamical Systems (2002), Cambridge University Press: Cambridge University Press, New York · Zbl 1006.37001
[78] Aguirre, J.; Viana, R. L.; Sanjuán, M. A. F., Fractal structures in nonlinear dynamics, Rev. Mod. Phys., 81, 333 (2009) · doi:10.1103/RevModPhys.81.333
[79] Losa, G. A.; Baumann, G.; Nonnenmacher, T. F., Fractal dimension of pericellular membranes in human lymphocytes and lymphoblastic leukemia cells, Pathol. Res. Pract., 188, 680-686 (1992) · doi:10.1016/S0344-0338(11)80080-4
[80] Brú, A.; Pastor, J. M.; Fernaud, I.; Brú, I.; Melle, S.; Berenguer, C., Super-rough dynamics on tumor growth, Phys. Rev. Lett., 81, 4008 (1998) · doi:10.1103/PhysRevLett.81.4008
[81] Burrough, P. A., Fractal dimensions of landscapes and other environmental data, Nature, 294, 240-242 (1981) · doi:10.1038/294240a0
[82] Kennedy, J.; Yorke, J. A., Basins of Wada, Physica D, 51, 213-225 (1991) · Zbl 0746.58054 · doi:10.1016/0167-2789(91)90234-Z
[83] Aguirre, J.; Sanjuán, M. A. F., Unpredictable behavior in the Duffing oscillator: Wada basins, Physica D, 171, 41-51 (2002) · Zbl 1008.37011 · doi:10.1016/S0167-2789(02)00565-1
[84] Vandermeer, J., Wada basins and qualitative unpredictability in ecological models: A graphical interpretation, Ecol. Modell., 176, 65-74 (2004) · doi:10.1016/j.ecolmodel.2003.10.028
[85] Rajagopal, K.; Jafari, S.; Pham, V.-T.; Wei, Z.; Premraj, D.; Thamilmaran, K.; Karthikeyan, A., Antimonotonicity, bifurcation and multistability in the Vallis model for El Niño, Int. J. Bifurcation Chaos, 29, 1950032 (2019) · Zbl 1414.34037 · doi:10.1142/S0218127419500329
[86] Upadhyay, R. K.; Iyengar, S. R., Introduction to Mathematical Modeling and Chaotic Dynamics (2013), CRC Press
[87] Layek, G., An Introduction to Dynamical Systems and Chaos (2015), Springer · Zbl 1354.34001
[88] Gérard, C.; Goldbeter, A., The cell cycle is a limit cycle, Math. Modell. Nat. Phenom., 7, 126-166 (2012) · Zbl 1312.92018 · doi:10.1051/mmnp/20127607
[89] Nakao, M., Enkhkhudulmur, T.-E., Katayama, N., and Karashima, A., “Entrainability of cell cycle oscillator models with exponential growth of cell mass,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2014), pp. 6826-6829.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.