×

On the (non)Hadamard property of the SJ state in a \(1+1\)D causal diamond. (English) Zbl 1537.83037

Summary: The Sorkin-Johnston (SJ) state is a candidate physical vacuum state for a scalar field in a generic curved spacetime. It has the attractive feature that it is covariantly and uniquely defined in any globally hyperbolic spacetime, often reflecting the underlying symmetries if there are any. A potential drawback of the SJ state is that it does not always satisfy the Hadamard condition. In this work, we study the extent to which the SJ state in a \(1+1\)D causal diamond is Hadamard, finding that it is not Hadamard at the boundary. We then study the softened SJ state, which is a slight modification of the original state to make it Hadamard. We use the softened SJ state to investigate whether some peculiar features of entanglement entropy in causal set theory may be linked to its non-Hadamard nature.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] Sanders, K., Thermal equilibrium states of a linear scalar quantum field in stationary spacetimes, Int. J. Mod. Phys. A, 28 (2013) · Zbl 1268.82005 · doi:10.1142/S0217751X1330010X
[2] Hollands, S.; Wald, R. M., Local Wick polynomials and time ordered products of quantum fields in curved spacetime, Commun. Math. Phys., 223, 289-326 (2001) · Zbl 0989.81081 · doi:10.1007/s002200100540
[3] Brunetti, R.; Fredenhagen, K.; Köhler, M., The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes, Commun. Math. Phys., 180, 633-52 (1996) · Zbl 0923.58052 · doi:10.1007/BF02099626
[4] Brunetti, R.; Fredenhagen, K., Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds, Commun. Math. Phys., 208, 623-61 (2000) · Zbl 1040.81067 · doi:10.1007/s002200050004
[5] Hollands, S.; Wald, R. M., Existence of local covariant time ordered products of quantum fields in curved spacetime, Commun. Math. Phys., 231, 309-45 (2002) · Zbl 1015.81043 · doi:10.1007/s00220-002-0719-y
[6] Fewster, C. J A., General worldline quantum inequality, Class. Quantum Grav., 17, 1897-911 (2000) · Zbl 1079.81555 · doi:10.1088/0264-9381/17/9/302
[7] Fewster, C.; Verch, R. A., Quantum weak energy inequality for dirac fields in curved spacetime, Commun. Math. Phys., 225, 331 (2002) · Zbl 1026.83028 · doi:10.1007/s002200100584
[8] Fewster, C. J.; Pfenning, M. J., A quantum weak energy inequality for spin one fields in curved space-time, J. Math. Phys., 44, 4480-513 (2003) · Zbl 1062.81115 · doi:10.1063/1.1602554
[9] Wald, R. M., The back reaction effect in particle creation in curved space-time, Commun. Math. Phys., 54, 1-19 (1977) · Zbl 1173.81328 · doi:10.1007/BF01609833
[10] DeWitt, B. S., Quantum field theory in curved spacetime, Phys. Rep., 19, 295-357 (1975) · doi:10.1016/0370-1573(75)90051-4
[11] Christensen, S. M., Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point-separation method, Phys. Rev. D, 14, 2490-501 (1976) · doi:10.1103/PhysRevD.14.2490
[12] Christensen, S. M., Regularization, renormalization and covariant geodesic point separation, Phys. Rev. D, 17, 946-63 (1978) · doi:10.1103/PhysRevD.17.946
[13] Décanini, Y.; Folacci, A., Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.044025
[14] Junker, W.; Schrohe, E., Adiabatic vacuum states on general spacetime manifolds: definition, construction and physical properties, Ann. Henri Poincaré, 3, 1113-81 (2002) · Zbl 1038.81052 · doi:10.1007/s000230200001
[15] Louko, J.; Satz, A., How often does the Unruh-DeWitt detector click? Regularization by a spatial profile, Class. Quantum Grav., 23, 6321-43 (2006) · Zbl 1117.83030 · doi:10.1088/0264-9381/23/22/015
[16] Fewster, C. J.; Juárez-Aubry, B. A.; Louko, J., Waiting for Unruh 2016, Class. Quantum Grav., 33 (2016) · Zbl 1346.83033 · doi:10.1088/0264-9381/33/16/165003
[17] Kay, B. S.; Radzikowski, M. J.; Wald, R. M., Quantum field theory on spacetimes with a compactly generated cauchy horizon, Commun. Math. Phys., 183, 533-56 (1997) · Zbl 0883.53057 · doi:10.1007/s002200050042
[18] Fewster, C. J.; Verch, R., The necessity of the Hadamard condition, Class. Quantum Grav., 30 (2013) · Zbl 1284.83057 · doi:10.1088/0264-9381/30/23/235027
[19] Sorkin, R. D., Scalar field theory on a causal set in histories form, J. Phys.: Conf. Ser., 306 (2011) · doi:10.1088/1742-6596/306/1/012017
[20] Johnston, S., Feynman propagator for a free scalar field on a causal set, Phys. Rev. Lett., 103 (2009) · doi:10.1103/PhysRevLett.103.180401
[21] Afshordi, N.; Aslanbeigi, S.; Sorkin, R. D., A distinguished vacuum state for a quantum field in a curved spacetime: formalism, features and cosmology, J. High Energy Phys., JHEP08(2012)137 (2012) · Zbl 1397.81188 · doi:10.1007/JHEP08(2012)137
[22] Johnston, S., Quantum fields on causal sets (2010)
[23] Fewster, C. J.; Verch, R., On a recent construction of ‘vacuum-like’ quantum field states in curved spacetime, Class. Quantum Grav., 29 (2012) · Zbl 1256.83013 · doi:10.1088/0264-9381/29/20/205017
[24] Aslanbeigi, S.; Buck, M., A preferred ground state for the scalar field in de Sitter space, J. High Energy Phys., JHEP08(2013)039 (2013) · Zbl 1342.83290 · doi:10.1007/JHEP08(2013)039
[25] Buck, M.; Dowker, F.; Jubb, I.; Sorkin, R., The Sorkin-Johnston state in a patch of the trousers spacetime, Class. Quantum Grav., 34 (2017) · Zbl 1368.83032 · doi:10.1088/1361-6382/aa589c
[26] Afshordi, N.; Buck, M.; Dowker, F.; Rideout, D.; Sorkin, R. D.; Yazdi, Y. K., A ground state for the causal diamond in 2 dimensions, J. High Energy Phys., JHEP10(2012)088 (2012) · doi:10.1007/JHEP10(2012)088
[27] Surya, S.; Nomaan, X.; Yazdi, Y. K., Studies on the SJ vacuum in de Sitter spacetime, J. High Energy Phys., JHEP07(2019)009 (2019) · doi:10.1007/JHEP07(2019)009
[28] Mathur, A.; Surya, S., Sorkin-Johnston vacuum for a massive scalar field in the 2D causal diamond, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.045007
[29] Avilán, N.; Reyes-Lega, A. F.; da Cunha, B. C., Coupling the Sorkin-Johnston state to gravity, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.084036
[30] Fewster, C. J., The art of the state, Int. J. Mod. Phys. D, 27 (2018) · Zbl 1430.81059 · doi:10.1142/S0218271818430071
[31] Saravani, M.; Sorkin, R. D.; Yazdi, Y. K., Spacetime entanglement entropy in 1 + 1 dimensions, Class. Quantum Grav., 31 (2014) · Zbl 1304.81128 · doi:10.1088/0264-9381/31/21/214006
[32] Sorkin, R. D.; Yazdi, Y. K., Entanglement entropy in causal set theory, Class. Quantum Grav., 35 (2018) · Zbl 1390.83072 · doi:10.1088/1361-6382/aab06f
[33] Keseman, T.; Muneesamy, H. J.; Yazdi, Y. K., Insights on entanglement entropy in 1 + 1 dimensional causal sets, Class. Quantum Grav., 39 (2022) · Zbl 1517.83007 · doi:10.1088/1361-6382/ac5fc0
[34] Duffy, C. F.; Jones, J. Y L.; Yazdi, Y. K., Entanglement entropy of disjoint spacetime intervals in causal set theory, Class. Quantum Grav., 39 (2022) · Zbl 1487.83012 · doi:10.1088/1361-6382/ac5493
[35] Surya, S.; Nomaan, X.; Yazdi, Y. K., Entanglement entropy of causal set de Sitter horizons, Class. Quantum Grav., 38 (2021) · Zbl 1480.83098 · doi:10.1088/1361-6382/abf279
[36] Sorkin, R. D., From green function to quantum field, Int. J. Geom. Meth. Mod. Phys., 14 (2017) · Zbl 1373.81269 · doi:10.1142/S0219887817400072
[37] Wingham, F L2018Generalised Sorkin-Johnston and Brum-Fredenhagen states for quantum fields on curved spacetimesPhD Thesis
[38] Kay, B. S.; Wald, R. M., Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon, Phys. Rep., 207, 49-136 (1991) · Zbl 0861.53074 · doi:10.1016/0370-1573(91)90015-E
[39] Fröb, M. B.; Taslimi Tehrani, M., Green’s functions and Hadamard parametrices for vector and tensor fields in general linear covariant gauges, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.025022
[40] Johnston, S2010Quantum fields on causal setsPhD ThesisImperial College London, England
[41] Rudin, W., Principles of Mathematical Analysis (1976), McGraw-Hill · Zbl 0346.26002
[42] Sorkin, R D2022Private Communication
[43] Sorkin, R. D., Expressing entropy globally in terms of (4D) field-correlations, J. Phys.: Conf. Ser., 484 (2014) · doi:10.1088/1742-6596/484/1/012004
[44] Calabrese, P.; Cardy, J., Entanglement entropy and conformal field theory, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1179.81026 · doi:10.1088/1751-8113/42/50/504005
[45] Chandran, A.; Laumann, C.; Sorkin, R., When is an area law not an area law?, Entropy, 18, 240 (2016) · doi:10.3390/e18070240
[46] Albertini, E2021φ^^4 interaction in causal set theory
[47] Jubb, I., Interacting scalar field theory on causal sets (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.