×

Enhancing force sensing in a squeezed optomechanical system with quantum non-demolition measurement. (English) Zbl 1537.81236

MSC:

81V80 Quantum optics
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
Full Text: DOI

References:

[1] Friis, N.; Vitagliano, G.; Malik, M.; Huber, M., Entanglement certification from theory to experiment, Nat. Rev. Phys., 1, 72-87 (2019) · doi:10.1038/s42254-018-0003-5
[2] Erhard, M.; Krenn, M.; Zeilinger, A., Advances in high-dimensional quantum entanglement, Nat. Rev. Phys., 2, 365-381 (2020) · doi:10.1038/s42254-020-0193-5
[3] Ma, Y.; Ma, Y. Z.; Zhou, Z. Q.; Li, C. F.; Guo, G. C., One-hour coherent optical storage in an atomic frequency comb memory, Nat. Commun., 12, 2381 (2021) · doi:10.1038/s41467-021-22706-y
[4] Bouillard, M.; Boucher, G.; Ferrer Ortas, J.; Pointard, B.; Tualle-Brouri, R., Quantum storage of single-photon and two-photon fock states with an all-optical quantum memory, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.210501
[5] Sleator, T.; Weinfurter, H., Realizable universal quantum logic gates, Phys. Rev. Lett., 74, 4087-4090 (1995) · Zbl 1020.81552 · doi:10.1103/PhysRevLett.74.4087
[6] Petit, L.; Eenink, H.; Russ, M.; Lawrie, W.; Hendrickx, N.; Philips, S.; Clarke, J.; Vandersypen, L.; Veldhorst, M., Universal quantum logic in hot silicon qubits, Nature, 580, 355-359 (2020) · doi:10.1038/s41586-020-2170-7
[7] Li, T.; Wang, W.; Yi, X., Enhancing the sensitivity of optomechanical mass sensors with a laser in a squeezed state, Phys. Rev., 104 (2021) · doi:10.1103/PhysRevA.104.013521
[8] Liu, S.; Liu, B.; Wang, J.; Sun, T.; Yang, W. X., Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system, Phys. Rev., 99 (2019) · doi:10.1103/PhysRevA.99.033822
[9] HÅkansson, J.; Kuyken, B.; Thourhout, D. V., Strong forces in optomechanically actuated resonant mass sensor, Opt. Express, 25, 30939-30945 (2017) · doi:10.1364/OE.25.030939
[10] Li, L.; Yang, W. X.; Zhang, Y.; Shui, T.; Chen, A. X.; Jiang, Z., Enhanced generation of charge-dependent second-order sideband and high-sensitivity charge sensors in a gain-cavity-assisted optomechanical system, Phys. Rev., 98 (2018) · doi:10.1103/PhysRevA.98.063840
[11] Zhao, X.; Hu, X., Measurement of tunnel coupling in a si double quantum dot based on charge sensing, Phys. Rev. Appl., 17 (2022) · doi:10.1103/PhysRevApplied.17.064043
[12] Nakajima, T.; Kojima, Y.; Uehara, Y.; Noiri, A.; Takeda, K.; Kobayashi, T.; Tarucha, S., Real-time feedback control of charge sensing for quantum dot qubits, Phys. Rev. Appl., 15 (2021) · doi:10.1103/PhysRevApplied.15.L031003
[13] Barry, J. F.; Schloss, J. M.; Bauch, E.; Turner, M. J.; Hart, C. A.; Pham, L. M.; Walsworth, R. L., Sensitivity optimization for nv-diamond magnetometry, Rev. Mod. Phys., 92 (2020) · doi:10.1103/RevModPhys.92.015004
[14] Zhu, G. L.; Liu, J.; Wu, Y.; Lü, X. Y., Quantum magnetometer with dual-coupling optomechanics, Laser Photon. Rev., 16 (2022) · doi:10.1002/lpor.202100636
[15] Ebrahimi, M. S.; Motazedifard, A.; Harouni, M. B., Single-quadrature quantum magnetometry in cavity electromagnonics, Phys. Rev., 103 (2021) · doi:10.1103/PhysRevA.103.062605
[16] Liu, Z.; Wei, Y.; Chen, L.; Li, J.; Dai, S.; Zhou, F.; Feng, M., Phonon-laser ultrasensitive force sensor, Phys. Rev. Appl., 16 (2021) · doi:10.1103/PhysRevApplied.16.044007
[17] Ranjit, G.; Cunningham, M.; Casey, K.; Geraci, A. A., Zeptonewton force sensing with nanospheres in an optical lattice, Phys. Rev., 93 (2016) · doi:10.1103/PhysRevA.93.053801
[18] Yan, Z. F.; He, B.; Lin, Q., Optomechanical force sensor operating over wide detection range, Opt. Express, 31, 16535-16548 (2023) · doi:10.1364/OE.486667
[19] Aspelmeyer, M.; Kippenberg, T. J.; Marquardt, F., Cavity optomechanics, Rev. Mod. Phys., 86, 1391-1452 (2014) · doi:10.1103/RevModPhys.86.1391
[20] Forstner, S.; Prams, S.; Knittel, J.; van Ooijen, E. D.; Swaim, J. D.; Harris, G. I.; Szorkovszky, A.; Bowen, W. P.; Rubinsztein-Dunlop, H., Cavity optomechanical magnetometer, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.120801
[21] Forstner, S.; Knittel, J.; Sheridan, E.; Swaim, J. D.; Rubinsztein-Dunlop, H.; Bowen, W. P., Sensitivity and performance of cavity optomechanical field sensors, Photonic Sens., 2, 259-270 (2012) · doi:10.1007/s13320-012-0067-2
[22] Li, B. B.; Ou, L.; Lei, Y.; Liu, Y. C., Cavity optomechanical sensing, Nanophotonics, 10, 2799-2832 (2021) · doi:10.1515/nanoph-2021-0256
[23] Braginsky, V. B.; Braginskiĭ, V. B.; Khalili, F. Y., Quantum Measurement (1995), Cambridge: Cambridge University Press, Cambridge
[24] Møller, C. B.; Thomas, R. A.; Vasilakis, G.; Zeuthen, E.; Tsaturyan, Y.; Balabas, M.; Jensen, K.; Schliesser, A.; Hammerer, K.; Polzik, E. S., Quantum back-action-evading measurement of motion in a negative mass reference frame, Nature, 547, 191-195 (2017) · doi:10.1038/nature22980
[25] Khalili, F. Y.; Polzik, E. S., Overcoming the standard quantum limit in gravitational wave detectors using spin systems with a negative effective mass, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.031101
[26] Li, X.; Xiong, B.; Chao, S.; Zhao, C.; Tan, H. T.; Zhou, L., Remote weak-signal measurement via bound states in optomechanical systems, Commun. Theor. Phys., 73 (2021) · Zbl 1521.81026 · doi:10.1088/1572-9494/abd0e8
[27] Woolley, M. J.; Clerk, A. A., Two-mode back-action-evading measurements in cavity optomechanics, Phys. Rev., 87 (2013) · doi:10.1103/PhysRevA.87.063846
[28] Suh, J.; Weinstein, A. J.; Lei, C. U.; Wollman, E. E.; Steinke, S. K.; Meystre, P.; Clerk, A. A.; Schwab, K. C., Mechanically detecting and avoiding the quantum fluctuations of a microwave field, Science, 344, 1262-1265 (2014) · doi:10.1126/science.1253258
[29] Zhao, W.; Zhang, S. D.; Miranowicz, A.; Jing, H., Weak-force sensing with squeezed optomechanics, Sci. China Phys. Mech. Astron., 63 (2020) · doi:10.1007/s11433-019-9451-3
[30] Motazedifard, A.; Dalafi, A.; Bemani, F.; Naderi, M. H., Force sensing in hybrid bose-einstein-condensate optomechanics based on parametric amplification, Phys. Rev., 100 (2019) · doi:10.1103/PhysRevA.100.023815
[31] Rakhubovsky, A. A.; Vostrosablin, N.; Filip, R., Squeezer-based pulsed optomechanical interface, Phys. Rev., 93 (2016) · doi:10.1103/PhysRevA.93.033813
[32] Korobko, M.; Kleybolte, L.; Ast, S.; Miao, H.; Chen, Y.; Schnabel, R., Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation, Phys. Rev. Lett., 118 (2017) · doi:10.1103/PhysRevLett.118.143601
[33] Harris, G. I.; McAuslan, D. L.; Stace, T. M.; Doherty, A. C.; Bowen, W. P., Minimum requirements for feedback enhanced force sensing, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.103603
[34] Bemani, F.; Černotík, O.; Ruppert, L.; Vitali, D.; Filip, R., Force sensing in an optomechanical system with feedback-controlled in-loop light, Phys. Rev. Appl., 17 (2022) · doi:10.1103/PhysRevApplied.17.034020
[35] Andersen, A. L.; Mølmer, K., Quantum nondemolition measurements of moving target states, Phys. Rev. Lett., 129 (2022) · doi:10.1103/PhysRevLett.129.120402
[36] Brunelli, M.; Malz, D.; Nunnenkamp, A., Conditional dynamics of optomechanical two-tone backaction-evading measurements, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.093602
[37] Imoto, N.; Haus, H. A.; Yamamoto, Y., Quantum nondemolition measurement of the photon number via the optical kerr effect, Phys. Rev. A, 32, 2287-2292 (1985) · doi:10.1103/PhysRevA.32.2287
[38] Braginsky, V. B.; Khalili, F. Y., Quantum nondemolition measurements: the route from toys to tools, Rev. Mod. Phys., 68, 1-11 (1996) · doi:10.1103/RevModPhys.68.1
[39] Caves, C. M.; Thorne, K. S.; Drever, R. W P.; Sandberg, V. D.; Zimmermann, M., On the measurement of a weak classical force coupled to a quantum-mechanical oscillator: I. Issues of principle, Rev. Mod. Phys., 52, 341-392 (1980) · doi:10.1103/RevModPhys.52.341
[40] Bocko, M. F.; Onofrio, R., On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress, Rev. Mod. Phys., 68, 755-799 (1996) · doi:10.1103/RevModPhys.68.755
[41] Ockeloen-Korppi, C. F.; Damskägg, E.; Pirkkalainen, J. M.; Clerk, A. A.; Woolley, M. J.; Sillanpää, M. A., Quantum backaction evading measurement of collective mechanical modes, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.140401
[42] Shomroni, I.; Qiu, L.; Malz, D.; Nunnenkamp, A.; Kippenberg, T. J., Optical backaction-evading measurement of a mechanical oscillator, Nat. Commun., 10, 2086 (2019) · doi:10.1038/s41467-019-10024-3
[43] Thomas, R. A.; Parniak, M.; Østfeldt, C.; Møller, C. B.; Bærentsen, C.; Tsaturyan, Y.; Schliesser, A.; Appel, J.; Zeuthen, E.; Polzik, E. S., Entanglement between distant macroscopic mechanical and spin systems, Nat. Phys., 17, 228-233 (2021) · doi:10.1038/s41567-020-1031-5
[44] Karg, T. M.; Gouraud, B.; Ngai, C. T.; Schmid, G. L.; Hammerer, K.; Treutlein, P., Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart, Science, 369, 174-179 (2020) · Zbl 1478.81023 · doi:10.1126/science.abb0328
[45] Braginsky, V. B.; Vorontsov, Y. I.; Thorne, K. S., Quantum nondemolition measurements, Science, 209, 547-557 (1980) · doi:10.1126/science.209.4456.547
[46] Inoue, R.; Tanaka, S. I R.; Namiki, R.; Sagawa, T.; Takahashi, Y., Unconditional quantum-noise suppression via measurement-based quantum feedback, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.163602
[47] Vool, U., Continuous quantum nondemolition measurement of the transverse component of a qubit, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.133601
[48] Serafin, A.; Fadel, M.; Treutlein, P.; Sinatra, A., Nuclear spin squeezing in helium-3 by continuous quantum nondemolition measurement, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.013601
[49] Liu, J.; Chen, H. T.; Segal, D., Quantum nondemolition photon counting with a hybrid electromechanical probe, Phys. Rev. A, 102 (2020) · doi:10.1103/PhysRevA.102.061501
[50] Zhang, W. Z.; Chen, L. B.; Cheng, J.; Jiang, Y. F., Quantum-correlation-enhanced weak-field detection in an optomechanical system, Phys. Rev., 99 (2019) · doi:10.1103/PhysRevA.99.063811
[51] Yan, Z. F.; He, B.; Lin, Q., Force sensing with an optomechanical system at room temperature, Phys. Rev., 107 (2023) · doi:10.1103/PhysRevA.107.013529
[52] He, Q.; Badshah, F.; Song, Y.; Wang, L.; Liang, E.; Su, S. L., Force sensing and cooling for the mechanical membrane in a hybrid optomechanical system, Phys. Rev., 105 (2022) · doi:10.1103/PhysRevA.105.013503
[53] Xu, X.; Taylor, J. M., Squeezing in a coupled two-mode optomechanical system for force sensing below the standard quantum limit, Phys. Rev., 90 (2014) · doi:10.1103/PhysRevA.90.043848
[54] Allahverdi, H.; Motazedifard, A.; Dalafi, A.; Vitali, D.; Naderi, M. H., Homodyne coherent quantum noise cancellation in a hybrid optomechanical force sensor, Phys. Rev., 106 (2022) · doi:10.1103/PhysRevA.106.023107
[55] Motazedifard, A.; Bemani, F.; Naderi, M. H.; Roknizadeh, R.; Vitali, D., Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection, New J. Phys., 18 (2016) · doi:10.1088/1367-2630/18/7/073040
[56] Sainadh, U. S.; Kumar, M. A., Displacement sensing beyond the standard quantum limit with intensity-dependent optomechanical coupling, Phys. Rev., 102 (2020) · doi:10.1103/PhysRevA.102.063523
[57] Chao, S. L.; Yang, Z.; Zhao, C. S.; Peng, R.; Zhou, L., Force sensing in a dual-mode optomechanical system with linear-quadratic coupling and modulated photon hopping, Opt. Lett., 46, 3075-3078 (2021) · doi:10.1364/OL.425484
[58] Chao, S. L.; Wang, D. W.; Yang, Z.; Zhao, C. S.; Peng, R.; Zhou, L., Backaction evading and amplification of weak force signal in an optomechanical system, Ann. Phys., 534 (2022) · Zbl 1531.81294 · doi:10.1002/andp.202100421
[59] Woolley, M. J.; Clerk, A. A., Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir, Phys. Rev., 89 (2014) · doi:10.1103/PhysRevA.89.063805
[60] Peano, V.; Schwefel, H. G L.; Marquardt, C.; Marquardt, F., Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification, Phys. Rev. Lett., 115 (2015) · doi:10.1103/PhysRevLett.115.243603
[61] Tian, L.; Zoller, P., Coupled ion-nanomechanical systems, Phys. Rev. Lett., 93 (2004) · doi:10.1103/PhysRevLett.93.266403
[62] Feng, L. J.; Gong, S. Q., Two-photon blockade generated and enhanced by mechanical squeezing, Phys. Rev., 103 (2021) · doi:10.1103/PhysRevA.103.043509
[63] Bai, C. H.; Wang, D. Y.; Zhang, S.; Liu, S.; Wang, H. F., Double-mechanical-oscillator cooling by breaking the restrictions of quantum backaction and frequency ratio via dynamical modulation, Phys. Rev., 103 (2021) · doi:10.1103/PhysRevA.103.033508}
[64] Liu, Z. X.; Xiong, H., Highly sensitive charge sensor based on atom-assisted high-order sideband generation in a hybrid optomechanical system, Sensors, 18 (2018) · doi:10.3390/s18113833
[65] Arcizet, O.; Jacques, V.; Siria, A.; Poncharal, P.; Vincent, P.; Seidelin, S., A single nitrogen-vacancy defect coupled to a nanomechanical oscillator, Nat. Phys., 7, 879-883 (2011) · doi:10.1038/nphys2070
[66] Rabl, P.; Kolkowitz, S. J.; Koppens, F.; Harris, J.; Zoller, P.; Lukin, M. D., A quantum spin transducer based on nanoelectromechanical resonator arrays, Nat. Phys., 6, 602-608 (2010) · doi:10.1038/nphys1679
[67] Hensinger, W. K.; Utami, D. W.; Goan, H. S.; Schwab, K.; Monroe, C.; Milburn, G. J., Ion trap transducers for quantum electromechanical oscillators, Phys. Rev., 72 (2005) · doi:10.1103/PhysRevA.72.041405
[68] Massel, F., Backaction-evading measurement of entanglement in optomechanics, Phys. Rev., 100 (2019) · doi:10.1103/PhysRevA.100.023824
[69] Liao, C. G.; Xie, H.; Chen, R. X.; Ye, M. Y.; Lin, X. M., Controlling one-way quantum steering in a modulated optomechanical system, Phys. Rev. A, 101 (2020) · doi:10.1103/PhysRevA.101.032120
[70] Mari, A.; Eisert, J., Gently modulating optomechanical systems, Phys. Rev. Lett., 103 (2009) · doi:10.1103/PhysRevLett.103.213603
[71] de Lépinay, L. M.; Ockeloen-Korppi, C. F.; Woolley, M. J.; Sillanpää, M. A., Quantum mechanics-free subsystem with mechanical oscillators, Science, 372, 625-629 (2021) · Zbl 1491.81013 · doi:10.1126/science.abf5389
[72] Momeni, F.; Naderi, M. H., Atomic quadrature squeezing and quantum state transfer in a hybrid atom-optomechanical cavity with two duffing mechanical oscillators, J. Opt. Soc. Am. B, 36, 775-785 (2019) · doi:10.1364/JOSAB.36.000775
[73] DeJesus, E. X.; Kaufman, C., Routh-hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A, 35, 5288-5290 (1987) · doi:10.1103/PhysRevA.35.5288
[74] Buchmann, L. F.; Schreppler, S.; Kohler, J.; Spethmann, N.; Stamper-Kurn, D. M., Complex squeezing and force measurement beyond the standard quantum limit, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.030801
[75] Scully, M. O.; Zubairy, M. S., Quantum Optics (1997), Cambridge: Cambridge University Press, Cambridge
[76] Leonhardt, U., Measuring the Quantum State of Light (1997), Cambridge: Cambridge University Press, Cambridge
[77] Mason, D.; Chen, J.; Rossi, M.; Tsaturyan, Y.; Schliesser, A., Continuous force and displacement measurement below the standard quantum limit, Nat. Phys., 15, 745-749 (2019) · doi:10.1038/s41567-019-0533-5
[78] Satya Sainadh, U.; Anil Kumar, M., Effects of linear and quadratic dispersive couplings on optical squeezing in an optomechanical system, Phys. Rev., 92 (2015) · doi:10.1103/PhysRevA.92.033824
[79] Giovannetti, V.; Vitali, D., Phase-noise measurement in a cavity with a movable mirror undergoing quantum brownian motion, Phys. Rev., 63 (2001) · doi:10.1103/PhysRevA.63.023812
[80] Bernal-García, D. N.; Vinck-Posada, H.; Woolley, M. J., Nonstationary force sensing under dissipative mechanical quantum squeezing, Phys. Rev., 102 (2020) · doi:10.1103/PhysRevA.102.053515
[81] Lucamarini, M.; Vitali, D.; Tombesi, P., Scheme for a quantum-limited force measurement with an optomechanical device, Phys. Rev., 74 (2006) · doi:10.1103/PhysRevA.74.063816
[82] Rugar, D.; Grütter, P., Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett., 67, 699-702 (1991) · doi:10.1103/PhysRevLett.67.699
[83] Bachtold, A.; Moser, J.; Dykman, M. I., Mesoscopic physics of nanomechanical systems, Rev. Mod. Phys., 94 (2022) · doi:10.1103/RevModPhys.94.045005
[84] Zhang, J. Q.; Li, Y.; Feng, M.; Xu, Y., Precision measurement of electrical charge with optomechanically induced transparency, Phys. Rev., 86 (2012) · doi:10.1103/PhysRevA.86.053806
[85] Knobel, R. G.; Cleland, A. N., Nanometre-scale displacement sensing using a single electron transistor, Nature, 424, 291-293 (2003) · doi:10.1038/nature01773
[86] Eichenfield, M.; Chan, J.; Camacho, R. M.; Vahala, K. J.; Painter, O., Optomechanical crystals, Nature, 462, 78-82 (2009) · doi:10.1038/nature08524
[87] Chan, J.; Alegre, T. M.; Safavi-Naeini, A. H.; Hill, J. T.; Krause, A.; Gröblacher, S.; Aspelmeyer, M.; Painter, O., Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature, 478, 89-92 (2011) · doi:10.1038/nature10461
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.