×

On the dynamics of a collapsing bubble in contact with a rigid wall. (English) Zbl 1537.76162

Summary: This work reveals that the dynamic response of a spherical cap bubble in contact with a rigid wall depends on the effective contact angle at the instant prior to collapse. This parameter allows us to discriminate between two regimes in which the mechanisms of interaction between the collapsing bubble and its surrounding medium differ significantly: when the contact angle is smaller than \(90^\circ\), a classical jet directed towards the wall is observed, whereas if the initial contact angle is larger than \(90^\circ\), an annular re-entrant jet parallel to the wall appears. We show that this change of behaviour can be explained using the impulse potential flow theory for small times, which shows the presence of a singularity on the initial acceleration of the contact line when the contact angle is larger than \(90^\circ\). Direct numerical simulations show that although viscosity regularises the solution at \(t > 0\), the solution remains singular at \(t = 0\). In these circumstances, numerical and experimental results show that the collapse of flat bubbles can eventually lead to the formation of a vortex ring that unexpectedly induces long-range effects. The role of the bubble geometry at the instant of maximum expansion on the overall collapse process is shown to be well captured by the impulse potential flow theory, which can be generalised easily to other bubble shapes. These results may find direct application in the interpretation of geophysical flows as well as the control and design of biomedical, naval, manufacturing and sonochemistry applications.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76D45 Capillarity (surface tension) for incompressible viscous fluids

References:

[1] Afkhami, S. & Bussmann, M.2008Height functions for applying contact angles to 2D VOF simulations. Intl J. Numer. Meth. Fluids57 (4), 453-472. · Zbl 1206.76040
[2] Atchley, A.A. & Prosperetti, A.1989The crevice model of bubble nucleation. J. Acoust. Soc. Am.86 (3), 1065-1084.
[3] Batchelor, G.K.2000An Introduction to Fluid Dynamics. Cambridge University Press.
[4] Bhat, A.P. & Gogate, P.R.2021Cavitation-based pre-treatment of wastewater and waste sludge for improvement in the performance of biological processes: a review. J. Environ. Chem. Engng9 (2), 104743.
[5] Blake, J.R., Leppinen, D.M. & Wang, Q.2015Cavitation and bubble dynamics: the Kelvin impulse and its applications. Interface Focus5 (5), 20150017.
[6] Blum, H. & Dobrowolski, M.1982On finite element methods for elliptic equations on domains with corners. Computing28 (1), 53-63. · Zbl 0465.65059
[7] Borkent, B.M., Gekle, S., Prosperetti, A. & Lohse, D.2009Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids21 (10), 102003. · Zbl 1183.76103
[8] Bourguille, J., Bergamasco, L., Tahan, G., Fuster, D. & Arrigoni, M.2017 Shock propagation effects in multilayer assembly including a liquid phase. In Key Engineering Materials, vol. 755, pp. 181-189. Trans Tech Publ.
[9] Brackbill, J.U., Kothe, D.B. & Zemach, C.1992A continuum method for modeling surface tension. J. Comput. Phys.100 (2), 335-354. · Zbl 0775.76110
[10] Brenner, M.P., Hilgenfeldt, S. & Lohse, D.2002Single-bubble sonoluminescence. Rev. Mod. Phys.74 (2), 425.
[11] Cole, R.H. & Weller, R.1948Underwater explosions. Phys. Today1 (6), 35.
[12] Crum, L.A.1979Tensile strength of water. Nature278 (5700), 148-149.
[13] Dauge, M.2006Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions. In Lecture Notes in Mathematics, vol. 1341. Springer. · Zbl 0668.35001
[14] Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. & Witten, T.A.1997Capillary flow as the cause of ring stains from dried liquid drops. Nature389 (6653), 827-829.
[15] Fan, Y., Li, H. & Fuster, D.2020Optimal subharmonic emission of stable bubble oscillations in a tube. Phys. Rev. E102 (1), 013105.
[16] Fuster, D.2019A review of models for bubble clusters in cavitating flows. Flow Turbul. Combust.102 (3), 497-536.
[17] Fuster, D. & Popinet, S.2018An All-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. J. Comput. Phys.374, 752-768. · Zbl 1416.76310
[18] Gonzalez-Avila, S.R., Denner, F. & Ohl, C.-D.2021The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall. Phys. Fluids33 (3), 032118.
[19] Hou, Z., Wang, L., Yan, X., Wang, Z. & An, L.2021Study on characteristics of the cavitation bubble dynamics of lithium bromide aqueous solution with ultrasonic interaction. J. Build. Engng44, 102424.
[20] Huh, C. & Scriven, L.E.1971Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci.35 (1), 85-101.
[21] Hupfeld, T., Laurens, G., Merabia, S., Barcikowski, S., Gökce, B. & Amans, D.2020Dynamics of laser-induced cavitation bubbles at a solid-liquid interface in high viscosity and high capillary number regimes. J. Appl. Phys.127 (4), 044306.
[22] Johnsen, E. & Colonius, T.2006Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys.219 (2), 715-732. · Zbl 1189.76351
[23] Kedrinskii, V.K.1978Surface effects from an underwater explosion. J. Appl. Mech. Tech. Phys.s 19 (4), 474-491.
[24] Koukouvinis, P., Gavaises, M., Georgoulas, A. & Marengo, M.2016Compressible simulations of bubble dynamics with central-upwind schemes. Intl J. Comput. Fluid Dyn.30 (2), 129-140. · Zbl 07516415
[25] Krefting, D., Mettin, R. & Lauterborn, W.2004High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason. Sonochem.11 (3-4), 119-123.
[26] Landau, L.D. & Lifshitz, E.1959Fluid Mechanics, vol. 6. Pergamon Press. · Zbl 0081.22207
[27] Lauer, E., Hu, X.Y., Hickel, S. & Adams, N.A.2012Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comput. Fluids69, 1-19. · Zbl 1365.76231
[28] Lechner, C., Lauterborn, W., Koch, M. & Mettin, R.2020Jet formation from bubbles near a solid boundary in a compressible liquid: numerical study of distance dependence. Phys. Rev. Fluids5 (9), 093604.
[29] Li, Z.-C. & Lu, T.-T.2000Singularities and treatments of elliptic boundary value problems. Math. Comput. Model.31 (8-9), 97-145. · Zbl 1042.35524
[30] Li, S., Zhang, A.-M., Wang, S. & Han, R.2018Transient interaction between a particle and an attached bubble with an application to cavitation in silt-laden flow. Phys. Fluids30 (8), 082111.
[31] Lohse, D., Schmitz, B. & Versluis, M.2001Snapping shrimp make flashing bubbles. Nature413 (6855), 477-478.
[32] Lyons, J.J., Haney, M.M., Fee, D., Wech, A.G. & Waythomas, C.F.2019Infrasound from giant bubbles during explosive submarine eruptions. Nat. Geosci.12 (11), 952-958.
[33] Maxwell, A.D., Cain, C.A., Hall, T.L., Fowlkes, J.B. & Xu, Z.2013Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials. Ultrasound Med. Biol.39 (3), 449-465.
[34] Maxwell, A.D., Wang, T.-Y., Cain, C.A., Fowlkes, J.B., Sapozhnikov, O.A., Bailey, M.R. & Xu, Z.2011Cavitation clouds created by shock scattering from bubbles during histotripsy. J. Acoust. Soc. Am.130 (4), 1888-1898.
[35] Naudé, C.F. & Ellis, A.T.1961On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary. Trans. ASME J. Basic Engng83 (4), 648-656.
[36] Ohl, C.-D., Arora, M., Dijkink, R., Janve, V. & Lohse, D.2006aSurface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett.89 (7), 074102.
[37] Ohl, C.-D., Arora, M., Ikink, R., De Jong, N., Versluis, M., Delius, M. & Lohse, D.2006bSonoporation from jetting cavitation bubbles. Biophys. J.91 (11), 4285-4295.
[38] Paris, R.2015Source mechanisms of volcanic tsunamis. Phil. Trans. R. Soc. A373 (2053), 20140380.
[39] Pishchalnikov, Y.A., Behnke-Parks, W.M., Schmidmayer, K., Maeda, K., Colonius, T., Kenny, T.W. & Laser, D.J.2019High-speed video microscopy and numerical modeling of bubble dynamics near a surface of urinary stone. J. Acoust. Soc. Am.146 (1), 516-531.
[40] Pope, S.B.2000 Turbulent flows. Cambridge University Press. · Zbl 0966.76002
[41] Popinet, S.2015A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations. J. Comput. Phys.302, 336-358. · Zbl 1349.76377
[42] Popinet, S.2018Numerical models of surface tension. Annu. Rev. Fluid Mech.50, 49-75. · Zbl 1384.76016
[43] Popinet, S. & Zaleski, S.2002Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech.464, 137-163. · Zbl 1019.76018
[44] Prado, C.A., Antunes, F.A.F., Rocha, T.M., Sánchez-Muñoz, S., Barbosa, F.G., Terán- Hilares, R., Cruz-Santos, M.M., Arruda, G.L., Da Silva, S.S. & Santos, J.C.2022A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials. Bioresour. Technol.345, 126458.
[45] Prentice, P., Cuschieri, A., Dholakia, K., Prausnitz, M. & Campbell, P.2005Membrane disruption by optically controlled microbubble cavitation. Nat. Phys.1 (2), 107-110.
[46] Reuter, F., Gonzalez-Avila, S.R., Mettin, R. & Ohl, C.-D.2017Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys. Rev. Fluids2 (6), 064202.
[47] Reuter, F. & Ohl, C.-D.2021Supersonic needle-jet generation with single cavitation bubbles. Appl. Phys. Lett.118 (13), 134103.
[48] Saade, Y., Jalaal, M., Prosperetti, A. & Lohse, D.2021Crown formation from a cavitating bubble close to a free surface. J. Fluid Mech.926, A5. · Zbl 1482.76127
[49] Saffman, P.G.1995Vortex Dynamics. Cambridge University Press.
[50] Steger, K.1990 Corner singularities of solutions of the potential equation in three dimensions. In Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices (ed. R.E. Bank, K. Merten & R. Bulirsch), pp. 283-297. Springer. · Zbl 0703.35072
[51] Supponen, O.2017 Collapse phenomena of deformed cavitation bubbles. Tech. Rep. EPFL.
[52] Tahan, G., Arrigoni, M., Bidaud, P., Videau, L. & Thévenet, D.2020Evolution of failure pattern by laser induced shockwave within an adhesive bond. Opt. Laser Technol.129, 106224.
[53] Trummler, T., Bryngelson, S.H., Schmidmayer, K., Schmidt, S.J., Colonius, T. & Adams, N.A.2020Near-surface dynamics of a gas bubble collapsing above a crevice. J. Fluid Mech.899, A16. · Zbl 1460.76807
[54] Tryggvason, G., Scardovelli, R. & Zaleski, S.2011Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Press. · Zbl 1226.76001
[55] Yosibash, Z., Shannon, S., Dauge, M. & Costabel, M.2011Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains. Intl J. Fract.168 (1), 31-52. · Zbl 1283.74017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.