×

Error estimate of a Legendre-Galerkin Chebyshev collocation method for a class of parabolic inverse problem. (English) Zbl 1537.65121

Summary: A Legendre-Galerkin Chebyshev collocation method is presented for the parabolic inverse problem with control parameters. Optimal order of convergence of the semi-discrete method is obtained in \(L^2\)-norm for the nonlinear term being not globally Lipschitz continuous. For time-discretization, a Legendre-tau method is applied. The method is implemented by the explicit-implicit iterative method. Suitable basis functions are constructed leading to sparse matrices, and the nonlinear term is collocated at the Chebyshev-Gauss-Lobatto points computed explicitly by the fast Legendre transform. Numerical results are given to show the efficiency and capability of this space-time spectral method.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D05 Numerical interpolation
65D30 Numerical integration
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
35K05 Heat equation
49M25 Discrete approximations in optimal control
Full Text: DOI

References:

[1] Ozisik, M. N.; Orlande, H. R., Inverse heat transfer, (Aerospace Engineering (2000)), 341
[2] Lin, Y. P., An inverse problem for a class of quasilinear parabolic equations, SIAM J. Math. Anal., 22, 1, 146-156 (1991) · Zbl 0739.35106
[3] Cannon, J.; Lin, Y.; Wang, S., Determination of source parameter in parabolic equations, Meccanica, 27, 2, 85-94 (1992) · Zbl 0767.35105
[4] Cannon, J. R.; Lin, Y. P.; Xu, S., Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations, Inverse Probl., 10, 2, 227-243 (1994) · Zbl 0805.65133
[5] Dehghan, M., Numerical solution of one-dimensional parabolic inverse problem, Appl. Math. Comput., 136, 2-3, 333-344 (2003) · Zbl 1026.65078
[6] Ye, C. R.; Sun, Z. Z., A linearized compact difference scheme for an one-dimensional parabolic inverse problem, Appl. Math. Model., 33, 3, 1521-1528 (2009) · Zbl 1168.65378
[7] Mohebbi, A.; Dehghan, M., High-order scheme for determination of a control parameter in an inverse problem from the over-specified data, Comput. Phys. Commun., 181, 12, 1947-1954 (2010) · Zbl 1219.65102
[8] Dehghan, M.; Saadatmandi, A., A tau method for the one-dimensional parabolic inverse problem subject to temperature overspecification, Comput. Math. Appl., 52, 6-7, 933-940 (2006) · Zbl 1125.65340
[9] Liu, L.; Ma, H., Space-time spectral method for parabolic inverse problem with unknown control parameter, J. Numer. Methods Comput. Appl., 41, 1, 19-26 (2020) · Zbl 1463.65274
[10] Wang, B.; Zou, G. A.; Zhao, P.; Wang, Q., Finite volume method for solving a one-dimensional parabolic inverse problem, Appl. Math. Comput., 217, 12, 5227-5235 (2011) · Zbl 1209.65093
[11] Yousefi, S. A., Finding a control parameter in a one-dimensional parabolic inverse problem by using the Bernstein Galerkin method, Inverse Probl. Sci. Eng., 17, 6, 821-828 (2009) · Zbl 1175.65109
[12] Rashedi, K.; Adibi, H.; Dehghan, M., Determination of space-time-dependent heat source in a parabolic inverse problem via the Ritz-Galerkin technique, Inverse Probl. Sci. Eng., 22, 7, 1077-1108 (2014) · Zbl 1321.65146
[13] Zhou, J.; Li, H.; Xu, Y., Ritz-Galerkin method for solving an inverse problem of parabolic equation with moving boundaries and integral condition, Appl. Anal., 98, 10, 1741-1755 (2019) · Zbl 1418.65121
[14] Shekarpaz, S.; Azari, H., Splitting method for an inverse source problem in parabolic differential equations: error analysis and applications, Numer. Methods Partial Differ. Equ., 36, 3, 654-679 (2020) · Zbl 07771408
[15] Ma, H., Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., 35, 3, 869-892 (1998) · Zbl 0912.35104
[16] Ma, H., Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., 35, 3, 893-908 (1998) · Zbl 0912.35105
[17] Ma, H.; Sun, W., A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential equations, SIAM J. Numer. Anal., 38, 5, 1425-1438 (2000) · Zbl 0986.65095
[18] Wu, H.; Ma, H.; Li, H., Optimal error estimates of the Chebyshev-Legendre spectral method for solving the generalized Burgers equation, SIAM J. Numer. Anal., 41, 2, 659-672 (2003) · Zbl 1050.65083
[19] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0658.76001
[20] Wang, Z.; Guo, B., Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations, J. Sci. Comput., 52, 1, 226-255 (2012) · Zbl 1255.65133
[21] Dehghan, M., Parameter determination in a partial differential equation from the overspecified data, Math. Comput. Model., 41, 2-3, 197-213 (2005) · Zbl 1080.35174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.