×

Mean dimension of natural extension of algebraic systems. (English) Zbl 1537.37018

Summary: Mean dimension may decrease after taking the natural extension. In this paper we show that mean dimension is preserved by natural extension for an endomorphism on a compact metrizable abelian group. As an application, we obtain that the mean dimension of an algebraic cellular automaton coincides with the mean dimension of its natural extension, which strengthens a result of D. Burguet and R. Shi [“Mean dimension of continuous cellular automata”, Preprint, arXiv:2105.09708] with a different proof.

MSC:

37B02 Dynamics in general topological spaces
37B15 Dynamical aspects of cellular automata
37C45 Dimension theory of smooth dynamical systems

References:

[1] D. Burguet and R. Shi, Mean dimension of continuous cellular automata, Israel J.Math. (to appear). · Zbl 07833083
[2] T. Ceccherini-Silberstein and M. Coornaert, Cellular automata and groups, Springer Monogr. Math., Springer-Verlag, Berlin, 2010. · Zbl 1218.37004
[3] Coornaert, Michel, Topological dimension and dynamical systems, Universitext, xvi+233 pp. (2015), Springer, Cham · Zbl 1326.54001 · doi:10.1007/978-3-319-19794-4
[4] Chung, Nhan-Phu, Some remarks on the entropy for algebraic actions of amenable groups, Trans. Amer. Math. Soc., 8579-8595 (2015) · Zbl 1357.37027 · doi:10.1090/S0002-9947-2014-06348-4
[5] Dikranjan, Dikran, Algebraic entropy for amenable semigroup actions, J. Algebra, 467-546 (2020) · Zbl 1453.20074 · doi:10.1016/j.jalgebra.2020.02.033
[6] Elliott, George A., The \(C^*\)-algebra of a minimal homeomorphism of zero mean dimension, Duke Math. J., 3569-3594 (2017) · Zbl 1410.46046 · doi:10.1215/00127094-2017-0033
[7] Gromov, Misha, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom., 323-415 (1999) · Zbl 1160.37322 · doi:10.1023/A:1009841100168
[8] Gutman, Yonatan, Mean dimension and Jaworski-type theorems, Proc. Lond. Math. Soc. (3), 831-850 (2015) · Zbl 1352.37017 · doi:10.1112/plms/pdv043
[9] Gutman, Yonatan, Embedding topological dynamical systems with periodic points in cubical shifts, Ergodic Theory Dynam. Systems, 512-538 (2017) · Zbl 1435.37034 · doi:10.1017/etds.2015.40
[10] Gutman, Yonatan, Mean dimension of \(\mathbb{Z}^k\)-actions, Geom. Funct. Anal., 778-817 (2016) · Zbl 1378.37056 · doi:10.1007/s00039-016-0372-9
[11] Hewitt, Edwin, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Band 115, viii+519 pp. (1963), Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-G\"{o}ttingen-Heidelberg · Zbl 0115.10603
[12] Ingram, W. T., Inverse limits, Developments in Mathematics, xvi+217 pp. (2012), Springer, New York · Zbl 1234.54002 · doi:10.1007/978-1-4614-1797-2
[13] Li, Hanfeng, Mean dimension, mean rank, and von Neumann-L\"{u}ck rank, J. Reine Angew. Math., 207-240 (2018) · Zbl 1392.37018 · doi:10.1515/crelle-2015-0046
[14] Lind, Douglas, An introduction to symbolic dynamics and coding, xvi+495 pp. (1995), Cambridge University Press, Cambridge · Zbl 1106.37301 · doi:10.1017/CBO9780511626302
[15] Lindenstrauss, Elon, From rate distortion theory to metric mean dimension: variational principle, IEEE Trans. Inform. Theory, 3590-3609 (2018) · Zbl 1395.94215 · doi:10.1109/TIT.2018.2806219
[16] Lindenstrauss, Elon, Mean topological dimension, Israel J. Math., 1-24 (2000) · Zbl 0978.54026 · doi:10.1007/BF02810577
[17] Rotman, Joseph J., Advanced modern algebra. Part 1, Graduate Studies in Mathematics, xiv+706 pp. (2015), American Mathematical Society, Providence, RI · Zbl 1332.00008 · doi:10.1090/gsm/165
[18] Schmidt, Klaus, Dynamical systems of algebraic origin, Progress in Mathematics, xviii+310 pp. (1995), Birkh\"{a}user Verlag, Basel · Zbl 0833.28001
[19] R. Shi, Finite mean dimension and marker property, Trans. Amer. Math. Soc. to appear. · Zbl 1527.37008
[20] Salce, Luigi, A general notion of algebraic entropy and the rank-entropy, Forum Math., 579-599 (2009) · Zbl 1203.20048 · doi:10.1515/FORUM.2009.029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.