×

Well-posedness for the Cahn-Hilliard-Navier-Stokes equations perturbed by gradient-type noise, in two dimensions. (English) Zbl 1537.35436

Summary: In this work, we study the problem of existence and uniqueness of solutions of the stochastic Cahn-Hilliard-Navier-Stokes system with gradient-type noise. We show that such kind of noise is related to the problem of modelling turbulence. We apply a rescaling argument to transform the stochastic system into a random deterministic one. We split the latter into two parts: the Navier-Stokes part and the Cahn-Hilliard part, respectively. The rescale operators possess good properties which allow to show that the rescaled Navier-Stokes equations have a unique solution, by appealing to \(\delta\)-monotone operators theory. While, well-posedness of the Cahn-Hilliard part is proved via a fixed point argument. Then, again a fixed point argument is used to prove global in time existence of a unique solution to the initial system. All the results are under the requirement that the initial data is in a certain small neighbourhood of the origin.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35Q35 PDEs in connection with fluid mechanics
76D06 Statistical solutions of Navier-Stokes and related equations
80A22 Stefan problems, phase changes, etc.
Full Text: DOI

References:

[1] Flory, PJ, Thermodynamics of high polymer solutions, J. Chem. Phys., 10, 51-61, 1942 · doi:10.1063/1.1723621
[2] Cook, H., Brownian motion in spinodal decomposition, Acta Metall., 18, 3, 297-306, 1970 · doi:10.1016/0001-6160(70)90144-6
[3] Da Prato, G.; Debussche, A., Stochastic Cahn-Hilliard equation, Nonlinear Anal., 26, 2, 241-263, 1996 · Zbl 0838.60056 · doi:10.1016/0362-546X(94)00277-O
[4] Orrieri, C.; Rocca, E.; Scarpa, L., Optimal control of stochastic phase-field models related to tumor growth, ESAIM Control Optim. Calc. Var., 26, 104, 2020 · Zbl 1459.35415 · doi:10.1051/cocv/2020022
[5] Röckner, M.; Yang, H.; Zhu, R., Conservative stochastic 2-dimensional Cahn-Hilliard equation, Ann. Appl. Probab., 31, 3, 1336-1375, 2021 · Zbl 1476.60104 · doi:10.1214/20-AAP1620
[6] Brzezniak, Z.; Capinski, M.; Flandoli, F., A convergence result for stochastic partial differential equations, Stochastics, 24, 423-445, 1988 · Zbl 0653.60049 · doi:10.1080/17442508808833526
[7] Munteanu, I.; Röckner, M., Global solutions for random vorticity equations perturbed by gradient dependent noise, in two and three dimensions, J. Evol. Equ., 20, 1173-1194, 2020 · Zbl 1447.60118 · doi:10.1007/s00028-019-00551-3
[8] Mikulevicius, R.; Rozovskii, BL, Global \(L_2\)-solutions of stochastic Navier-Stokes equations, Ann. Prob., 33, 1, 137-176, 2005 · Zbl 1098.60062 · doi:10.1214/009117904000000630
[9] Sango, M., Magnetohydrodynamic turbulent flows: existence results, Phys. D Nonliner Phenom., 239, 12, 912-923, 2010 · Zbl 1193.76162 · doi:10.1016/j.physd.2010.01.009
[10] Giga, Y.; Kobayashi, R., On constrained equations with singular diffusivity, Methods Appl. Anal., 10, 2, 253-278, 2003 · Zbl 1058.58006 · doi:10.4310/MAA.2003.v10.n2.a6
[11] Giga, MH; Giga, Y., Generalized motion by non local curvature in the plane, Arch. Rot. Mech. Anal., 159, 295-333, 2001 · Zbl 1004.35075 · doi:10.1007/s002050100154
[12] Munteanu, I.; Röckner, M., The total variation flow perturbed by gradient linear multiplicative noise, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21, 1, 1850003, 2018 · Zbl 1430.35281 · doi:10.1142/S0219025718500030
[13] Feireisl, E.; Petcu, M., Stability of strong solutions for a model of incompressible two-phase flow under thermal fluctuations, J. Differ. Equ., 267, 3, 1836-1858, 2019 · Zbl 1416.35204 · doi:10.1016/j.jde.2019.03.006
[14] A. Di Primio, M. Grasselli, L. Scarpa, A stochastic Allen-Cahn-Navier-Stokes system with singular potential. https://arxiv.org/abs/2205.10521v2
[15] Deugoué, G.; Ndongmo Ngana, A.; Tachim Medjo, T., Strong solutions for the stochastic Cahn-Hilliard-Navier-Stokes system, J. Differ. Equ., 275, 27-76, 2021 · Zbl 1455.35306 · doi:10.1016/j.jde.2020.12.002
[16] Deugoué, G.; Tachim Medjo, T., Large deviation for a 2D Allen-Cahn-Navier-Stokes model under random influences, Asymptot. Anal., 123, 1-2, 41-78, 2021 · Zbl 1473.35437
[17] Sun, C.; Huang, Q.; Liu, H., The non-Lipschitz stochastic Cahn-Hilliard-Navier-Stokes equations in two space dimensions, Stoch. Dyn., 22, 4, 2250003, 2022 · Zbl 1491.35470 · doi:10.1142/S0219493722500034
[18] Giorgini, A.; Grasselli, M.; Wu, H., The Cahn-Hilliard-Hele-Shaw system with singular potential, Ann. Inst. H. Poincaré Anal. Non Lineaire, 35, 1079-1118, 2018 · Zbl 1394.35356 · doi:10.1016/j.anihpc.2017.10.002
[19] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, New York: Springer, New York · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[20] Barbu, V., Nonlinear Differential Equations of Monotone Type in Banach Spaces, 2010, New-York: Springer, New-York · Zbl 1197.35002 · doi:10.1007/978-1-4419-5542-5
[21] Stewart, HB, Generation of analytic semigroups by strongly elliptic operators, Trans. Am. Math. Soc., 199, 141-162, 1974 · Zbl 0264.35043 · doi:10.1090/S0002-9947-1974-0358067-4
[22] Weissler, F., Semilinear evolution equations in Banach spaces, J. Funct. Anal., 32, 277-296, 1979 · Zbl 0419.47031 · doi:10.1016/0022-1236(79)90040-5
[23] Ichikawa, A., Stability of semilinear stochastic evolution equations, J. Math. Anal. Appl., 9, 1, 12-14, 1982 · Zbl 0497.93055 · doi:10.1016/0022-247X(82)90041-5
[24] Brezis, H., Opératures Maximaux Monotones et sémigroupes de Contractions Dans les ’espaces de Hilbert, 1973, Amsterdam: North Holland, Amsterdam · Zbl 0252.47055
[25] Lang, O.; Cirsan, D., Well-posedness for a stochastic 2D Euler equation with transport noise, Stoch. PDE Anal. Comp., 2022 · Zbl 1520.60033 · doi:10.1007/s40072-021-00233-7
[26] Temam, R., On the Theory and Numerical Analysis of the Navier-Stokes Equations, 1973, College Park: University of Maryland, College Park · Zbl 0273.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.