×

Analysis of the growth of a radial tumor with triple-layered structure. (English) Zbl 1537.35429

Summary: We study a free boundary problem on the evolution of a radial tumor with triple-layered structure. Based on the nutrient thresholds \(\sigma_Q\) and \(\sigma_D\), cells in the tumor spheroid are divided into three types, i.e. proliferating cells, quiescent cells and necrotic cells, hence it forms a layered structure from tumor’s surface to its center. The novelty of this paper is that the growth of the triple-layered tumor is first taken into rigorous analysis, and the difficulty arises from the two unknown moving interfaces \(\eta\) and \(\rho\) between different cell layers inside the tumor. We show existence and uniqueness of the stationary solution to the system for different external nutrient supply \(\bar{\sigma}\). It is proved that there exist two constants \(\sigma^*\) and \(\sigma_*\) with the relation \(\sigma^*> \sigma_*>\tilde \sigma\), such that if \(\bar{\sigma}> \sigma^*\), the dormant tumor forms a triple-layered structure; if \(\sigma_*<\bar{\sigma} \leq \sigma^*\), the dormant tumor has double layers with proliferating cells and quiescent cells; if \(\tilde \sigma <\bar{\sigma}\leq \sigma_*\), the dormant tumor is filled with only proliferating cells and appears as a single layer; and if \(\bar{\sigma}\leq\tilde \sigma\), the dormant tumor vanishes. The asymptotic stability of the stationary solution above is also studied. We can show the tendency of the evolutionary tumor towards its dormant state by using only \(\bar{\sigma}\) and the initial radius \(R_0\) as well.

MSC:

35R35 Free boundary problems for PDEs
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
92C37 Cell biology
Full Text: DOI

References:

[1] J. A. Adam and N. Bellomo, A Survey of Models for Tumor-Immune System Dynamics, Boston, Birkhauser, 1997. · Zbl 0874.92020
[2] H. G. A. Bueno Ercole Zumpano, Stationary solutions of a model for the growth of tumors and a connection between the nonnecrotic and necrotic phases, SIAM J. Appl. Math., 68, 1004-1025, 2008 · Zbl 1160.35344 · doi:10.1137/060654815
[3] H. M. Byrne Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130, 151-181, 1995 · Zbl 0836.92011 · doi:10.1016/0025-5564(94)00117-3
[4] H. M. Byrne Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135, 187-216, 1996 · Zbl 0856.92010 · doi:10.1016/0025-5564(96)00023-5
[5] S. Cui, Analysis of a Free boundary problem modeling tumor growth, Acta Math. Sin. (Engl. Ser.), 21, 1071-1082, 2005 · Zbl 1108.35138 · doi:10.1007/s10114-004-0483-3
[6] S. Cui, Global existence of solutions for a free boundary problem modelling the growth of necrotic tumors, Interfaces Free Bound., 7, 147-159, 2005 · Zbl 1078.35139 · doi:10.4171/IFB/118
[7] S. Cui, Formation of necrotic cores in the growth of tumors: Analytic results, Acta Math. Sci. Ser. B (Engl. Ed.), 26, 781-796, 2006 · Zbl 1141.35474 · doi:10.1016/S0252-9602(06)60104-5
[8] S. J. Cui Escher, Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth, Comm. Partial Differential Equations, 33, 636-655, 2008 · Zbl 1147.35113 · doi:10.1080/03605300701743848
[9] S. A. Cui Friedman, Analysis of a mathematical model of the growth of necrotic tumors, J. Math. Anal. Appl., 255, 636-677, 2001 · Zbl 0984.35169 · doi:10.1006/jmaa.2000.7306
[10] S. S. Cui Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation, J. Math. Anal. Appl., 336, 523-541, 2007 · Zbl 1116.92032 · doi:10.1016/j.jmaa.2007.02.047
[11] J. Escher, Classical solutions to a moving boundary problem for an elliptic-parabolic system, Interfaces Free Bound., 6, 175-193, 2004 · Zbl 1057.35097 · doi:10.4171/IFB/96
[12] A. B. Friedman Hu, Asymptotic stability for a free boundary problem arising in a tumor model, J. Differential Equations, 227, 598-639, 2006 · Zbl 1136.35106 · doi:10.1016/j.jde.2005.09.008
[13] A. K.-Y. Friedman Lam, Analysis of a free-boundary tumor model with angiogensis, J. Differential Equations, 259, 7636-7661, 2015 · Zbl 1344.35172 · doi:10.1016/j.jde.2015.08.032
[14] A. F. Friedman Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38, 262-284, 1999 · Zbl 0944.92018 · doi:10.1007/s002850050149
[15] H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theoret. Biol., 56, 229-242, 1976 · doi:10.1016/S0022-5193(76)80054-9
[16] W. J. D. B. et Hao Hauenstein Hu al., Bifurcation for a free boundary problem modeling the growth of a tumor with a necrotic core, Nonlinear Anal. Real World Appl., 13, 694-709, 2012 · Zbl 1238.35193 · doi:10.1016/j.nonrwa.2011.08.010
[17] Y. Y. Huang Zhuang, Analysis of a radial free boundary tumor model with time-dependent absorption efficiency, J. Differential Equations, 373, 243-282, 2023 · Zbl 1522.35601 · doi:10.1016/j.jde.2023.07.014
[18] R. Li, Qualitative Analysis of Tumor Structures, Master Degree Thesis (in Chinese), Sun Yat-sen University, 2007.
[19] Y. Y. Liu Zhuang, Analytic results of a double-layered radial tumor model with different consumption rates, Nonlinear Anal. Real World Appl., 76, 104004, 2024 · doi:10.1016/j.nonrwa.2023.104004
[20] M.-J. Lu, W. Hao, B. Hu and S. Li, Bifurcation analysis of a free boundary model of vascular tumor growth with a necrotic core and chemotaxis, J. Math. Biol., 86 (2023), Paper No. 19, 28 pp. · Zbl 1506.35008
[21] H. Song, W. Hu and Z. Wang, Analysis of a nonlinear free-boundary tumor model with angiogenesis and a connection between the nonnecrotic and necrotic phases, Nonlinear Anal. Real World Appl., 59 (2021), Paper No. 103270, 11 pp. · Zbl 1464.35378
[22] H. B. Z. Song Hu Wang, Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core, Discrete Contin. Dyn. Syst. Ser. B, 26, 667-691, 2021 · Zbl 1465.35420 · doi:10.3934/dcdsb.2020084
[23] R. M. Sutherland, Cell and environmental interactions in tumor microregions: The multicell spheroid model, Science, 240, 177-184, 1988 · doi:10.1126/science.2451290
[24] J. Wu, Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors, Discrete Contin. Dyn. Syst., 39, 3399-3411, 2019 · Zbl 1426.35219 · doi:10.3934/dcds.2019140
[25] J. Wu, Analysis of a nonlinear necrotic tumor model with two free boundaries, J. Dynam. Differential Equations, 33, 511-524, 2021 · Zbl 1467.35363 · doi:10.1007/s10884-019-09817-3
[26] J. C. Wu Wang, Radially symmetric growth of necrotic tumors and connection with nonnecrotic tumors, Nonlinear Anal. Real World Appl., 50, 25-33, 2019 · Zbl 1433.35433 · doi:10.1016/j.nonrwa.2019.04.012
[27] J. S. Wu Xu, Asymptotic behavior of a nonlinear necrotic tumor model with a periodic external nutrient supply, Discrete Contin. Dyn. Syst. Ser. B, 25, 2453-2460, 2020 · Zbl 1442.35483 · doi:10.3934/dcdsb.2020018
[28] S. Xu and Z. Xuan, Analysis of a free boundary problem for vascularized tumor growth with a necrotic core and time delays, Nonlinear Anal. Real World Appl., 72 (2023), Paper No. 103855, 11 pp. · Zbl 1518.92049
[29] J. Zheng and S. Cui, Analysis of a tumor model free boundary problem with action of an inhibitor and nonlinear boundary conditions, J. Math. Anal. Appl., 496 (2021), Paper No. 124793, 35 pp. · Zbl 1475.35426
[30] Y. S. Zhuang Cui, Analysis of a free boundary problem modeling the growth multicell spheroids with angiogenesis, J. Differential Equations, 265, 620-644, 2018 · Zbl 1392.35322 · doi:10.1016/j.jde.2018.03.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.