×

Integration of the loaded MKDV equation with a source in the class of rapidly decreasing functions. (Russian. English summary) Zbl 1537.35314

Summary: We consider the Cauchy problem for a loaded modified Korteweg-de Vries equation with a self-consistent source. The evolution of the scattering data of the Dirac operator, whose potential is a solution of the loaded modified Korteweg-de Vries equation with a self-consistent source in the class of rapidly decreasing functions, is derived. A specific example is given to illustrate the application of the obtained results.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35P25 Scattering theory for PDEs
Full Text: DOI

References:

[1] Gardner C. S., Greene I. M., Kruskal M. D., Miura R. M. Method for solving the Korteweg-de Vries equation // Phys. Rev. Lett. 1967. V. 19, N 19. P. 1095-1097. · Zbl 1103.35360
[2] Lax P. D. Integrals of nonlinear equations of evolution and solitary waves // Commun. Pure Appl. Math. 1968. V. 21, N 5. P. 467-490. · Zbl 0162.41103
[3] Wadati M. The exact solution of the modified Korteweg-de Vries equation // J. Phys. Soc. Japan. 1972. V. 32. P. 1681.
[4] Khater A. H., El-Kalaawy O. H., Callebaut D. K. Backlund transformations and exact solu-tions for Alfven solitons in a relativistic electron-pPositron plasma // Phys. Scr. 1998. V. 58, N 6. P. 545-548.
[5] Schief W. An infinite hierarchy of symmetries associated with hyperbolic surfaces // Non-linearity. 1995. V. 8, N 1. P. 1-9. · Zbl 0813.58041
[6] Matsutani S., Tsuru H. Reflectionless quantum wire // J. Phys. Soc. Japan. 1991. V. 60, N 11. P. 3640-3644.
[7] Johnpillai A. G., Khalique C. M., Biswas A. Exact solutions of the mKdV equation with time-dependent coefficients // Math. Commun. 2011. V. 16. P. 509-518. · Zbl 1246.65190
[8] Biswas A. Solitary wave solution for the generalized KdV equation with timedependent damp-ing and dispersion // Commun. Nonlinear Sci. Numer. Simul. 2009. V. 14. P. 3503-3506. · Zbl 1221.35306
[9] Vaganan B. M., Kumaran M. S. Exact linearization and invariant solutions of the generalized Burger’s equation with linear damping and variable viscosity // Stud. Appl. Math. 2006. V. 117. P. 95-108. · Zbl 1145.35453
[10] Xiao-Yan T., Fei H., Sen-Yue L. Variable coefficient KdV equation and the analytical diagnosis of a dipole blocking life cycle // Chin. Phys. Lett. 2006. V. 23. P. 887-890.
[11] Demiray H. Variable coefficient modified KdV equation in fluid-filled elastic tubes with steno-sis: Solitary waves // Chaos, Solitons, Fractals. 2009. V. 42. P. 358-364. · Zbl 1198.74018
[12] Хасанов А. Б., Уразбоев Г. У. Метод решения уравнения мКдФ с самосогласованным источником // Узб. мат. журн. 2003. № 1. С. 69-75.
[13] Мамедов К. А. Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues // Russ. Math. 2020. V. 64, N 10. P. 66-78. · Zbl 1468.35175
[14] Wu J., Geng X. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation // Commun. Nonlinear Sci. Numer. Simul. 2017. V. 53. P. 83-93. · Zbl 1510.35281
[15] Vaneeva O. Lie symmetries and exact solutions of variable coefficient mKdV equations: an equivalence based approach // Commun. Nonlinear Sci. Numer. Simul. 2012. V. 17, N 2. P. 611-618. · Zbl 1245.35114
[16] Salas A. H. Exact solutions to mKdV equation with variable coefficients // Appl. Math. Comput. 2010. V. 216, N 10. P. 2792-2798. · Zbl 1195.35270
[17] Dai C., Zhu J., Zhang J. New exact solutions to the mKdV equation with variable coeffici-ents // Chaos, Solitons, Fractals. 2006. V. 27, N 4. P. 881-886. · Zbl 1088.35513
[18] Das S., Ghosh D. AKNS formalism and exact solutions of KdV and modified KdV equations with variable-coefficients // Int. J. Adv. Res. Math. 2016. V. 6. P. 32-41.
[19] Zheng X., Shang Y., Huang Y. Abundant explicit and exact solutions for the variable coeffici-ent mKdV equations // Hindawi Publ. Corp. Abstr. Appl. Anal. 2013. V. 2013. Article ID 109690. · Zbl 1300.35128
[20] Фролов И. С. Обратная задача рассеяния для системы Дирака на всей оси // Докл. АН СССР. 1972. Т. 207, № 1. С. 44-47.
[21] Демонтис Ф. Точные решения модифицированного уравнения Кортевега де Фриза // Теор. мат. физика. 2011. Т. 168, № 1. С. 35-48.
[22] Хасанов А. Б. Об обратной задачи теории рассеяния для системы двух несамосопряжен-ных дифференциальных уравнений первого порядка // Докл. АН. СССР. 1984. Т. 277, № 3. С. 559-562.
[23] Нахушев А. М. Уравнения математической биологии. М.: Высшая школа, 1995.
[24] Нахушев А. М. Нагруженные уравнения и их приложения // Дифференц. уравнения. 1983. Т. 19, № 1. С. 86-94.
[25] Кожанов А. И. Нелинейные нагруженные уравнения и обратные задачи // Журн. вы-числ. математики и мат. физики. 2004. Т. 44, № 4. С. 694-716.
[26] Khasanov A. B., Hoitmetov U. A. On integration of the loaded mKdV equation in the class of rapidly decreasing functions // Изв. Иркут. гос. ун-та. Сер. Математика. 2021. № 38. С. 19-35. · Zbl 1483.35186
[27] Hoitmetov U. A. Integration of the sine-Gordon equation with a source and an additional term // Rep. Math. Phys. 2022. V. 90, N 2. P. 221-240. · Zbl 07633028
[28] Хоитметов У. А. Интегрирование уравнения Хироты с коэффициентами, зависящими от времени // Теор. мат. физика. 2023. Т. 214, № 1. С. 30-42.
[29] Khasanov A. B., Hoitmetov U. A. Integration of the loaded Korteweg-de Vries equation with a self-consistent source in the class of rapidly decreasing complex-valued functions // Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 2022. V. 42, N 4. P. 1-15.
[30] Хасанов А. Б., Хоитметов У. А. Интегрирование общего нагруженного уравнения Кор-тевега де Фриза с интегральным источником в классе быстроубывающих комплексно-значных функций // Изв. вузов. Математика. 2021. № 7. С. 52-66.
[31] Захаров В. Е., Шабат А. Б. Точная теория двумерной самофокусировки и одномерной автомодуляции волн в нелинейной среде // Журн. экспер. теор. физики. 1971. Т. 61, № 1. С. 118-134.
[32] Абловиц М., Сигур Х. Солитоны и метод обратной задачи. М.: Мир, 1987.
[33] Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые урав-нения. М.: Мир, 1988. Поступила в редакцию 8 июля 2022 г. После доработки 2 мая 2023 г. Принята к публикации 29 мая 2023 г.
[34] Хоитметов Умид Азадович, Cобиров Шехзод Кучкарбой угли Ургенчский государственный университет кафедра прикладной математики и математической физики, ул. Х. Алимджана, 14, Ургенч 220100, Узбекистан x umid@mail.ru, shehzod6285@mail.ru REFERENCES
[35] Gardner C. S., Greene I. M., Kruskal M. D., and Miura R. M., “Method for solving the Korteweg-de Vries equation,” Phys. Rev. Lett., 19, 1095-1097 (1967). · Zbl 1103.35360
[36] Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves,” Commun. Pure Appl. Math., 21, 467-490 (1968). · Zbl 0162.41103
[37] Wadati M., “The exact solution of the modified Korteweg-de Vries equation,” J. Phys. Soc. Japan., 32, 1681 (1972).
[38] Khater A. H., El-Kalaawy O. H., and Callebaut D. K., “Backlund transformations and exact solutions for Alfven solitons in a relativistic electron-positron plasma,” Phys. Scr., 58, No. 6, 545-548 (1998).
[39] Schief W., “An infinite hierarchy of symmetries associated with hyperbolic surfaces,” Non-linearity, 8, No. 1, 1-9 (1995). · Zbl 0813.58041
[40] Matsutani S. and Tsuru H., “Reflectionless quantum wire,” J. Phys. Soc. Japan, 60, No. 11, 3640-3644 (1991).
[41] Johnpillai A. G., Khalique C. M., and Biswas A., “Exact solutions of the mKdV equation with time-dependent coefficients,” Math. Commun., 16, 509-518 (2011). · Zbl 1246.65190
[42] Biswas A., “Solitary wave solution for the generalized KdV equation with timedependent damping and dispersion,” Commun. Nonlinear Sci. Numer. Simul., 14, 3503-3506 (2009). · Zbl 1221.35306
[43] Vaganan B. M. and Kumaran M. S., “Exact linearization and invariant solutions of the gen-eralized Burger”s equation with linear damping and variable viscosity,” Stud. Appl. Math., 117, 95-108 (2006). · Zbl 1145.35453
[44] Xiao-Yan T., Fei H., and Sen-Yue L., “Variable coefficient KdV equation and the analytical diagnosis of a dipole blocking life cycle,” Chin. Phys. Lett., 23, 887-890 (2006).
[45] Demiray H., “Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: Solitary waves,” Chaos, Solitons, Fractals, 42, 358-364 (2009). · Zbl 1198.74018
[46] Khasanov A. B. and Urazboev G. U., “Method for solving the mKdV equation with a self-consistent source [in Russian],” Uzbek. Mat. Zh., No. 1, 69-75 (2003).
[47] Mamedov K. A., “Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues,” Russ. Math., 64, No. 10, 66-78 (2020). · Zbl 1468.35175
[48] Wu J. and Geng X., “Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation,” Commun. Nonlinear Sci. Numer. Simul., 53, 83-93 (2017). · Zbl 1510.35281
[49] Vaneeva O., “Lie symmetries and exact solutions of variable coefficient mKdV equations: an equivalence based approach,” Commun. Nonlinear Sci. Numer. Simul., 17, No. 2, 611-618 (2012). · Zbl 1245.35114
[50] Salas A. H., “Exact solutions to mKdV equation with variable coefficients,” Appl. Math. Comput., 216, No. 10, 2792-2798 (2010). · Zbl 1195.35270
[51] Dai C., Zhu J., and Zhang J., “New exact solutions to the mKdV equation with variable coefficients,” Chaos, Solitons, Fractals, 27, No. 4, 881-886 (2006). · Zbl 1088.35513
[52] Das S. and Ghosh D., “AKNS formalism and exact solutions of KdV and modified KdV equations with variable coefficients,” Int. J. Adv. Res. Math., 6, 32-41 (2016).
[53] Zheng X., Shang Y., and Huang Y., “Abundant explicit and exact solutions for the vari-able coefficient mKdV equations,” Hindawi Publ. Corp. Abstr. Appl. Anal., 2013, article No. 109690 (2013). · Zbl 1300.35128
[54] Frolov I. S., “Inverse scattering problem for a Dirac system on the whole axis [in Russian],” Dokl. Akad. Nauk SSSR, 207, No. 1, 44-47 (1972). · Zbl 0284.34027
[55] Demontis F., “Exact solutions of the modified Korteweg-de Vries equation [in Russian],” Teor. Mat. Fiz., 168, No. 1, 35-48 (2011).
[56] Khasanov A. B., “An inverse problem in scattering theory for a system of two first-order nonselfadjoint differential equations [in Russian],” Dokl. Akad. Nauk SSSR, 277, No. 3, 559-562 (1984).
[57] Nakhushev A. M., Equations of Mathematical Biology [in Russian], Vysshaya Shkola, Moscow (1995). · Zbl 0991.35500
[58] Nakhushev A. M., “Loaded equations and their applications [in Russian],” Differ. Equ., 19, No. 1, 86-94 (1983). · Zbl 0536.35080
[59] Kozhanov A. I., “Nonlinear loaded equations and inverse problems [in Russian],” Zh. Vychisl. Mat. Mat. Fiz., 44, No. 2, 694-716 (2004). · Zbl 1114.35148
[60] Khasanov A. B. and Hoitmetov U. A., “On integration of the loaded mKdV equation in the class of rapidly decreasing functions,” Bull. Irkut. State Univ., Ser. Math., 38, 19-35 (2021). · Zbl 1483.35186
[61] Hoitmetov U. A., “Integration of the sine-Gordon equation with a source and an additional term,” Rep. Math. Phys., 90, No. 2, 221-240 (2022). · Zbl 07633028
[62] Hoitmetov U. A., “Integration of the Hirota equation with time-dependent coefficients,” Theor. Math. Phys., 214, No. 1, 30-42 (2023). · Zbl 1516.37098
[63] Khasanov A. B. and Hoitmetov U. A., “Integration of the loaded Korteweg-de Vries equation with a self-consistent source in the class of rapidly decreasing complex-valued functions,” Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci., 42, No. 4, 1-15 (2022) · Zbl 1538.35332
[64] Khasanov A. B. and Hoitmetov U. A., “Integration of the general loaded Korteweg-de Vries equation with an integral type source in the class of rapidly decreasing complex-valued func-tions,” Russ. Math., 65, No. 7, 43-57 (2021). · Zbl 1489.35239
[65] Zakharov V. E. and Shabat A. B., “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys., 34, No. 1, 62-69 (1972).
[66] Ablowitz M. and Sigur H., Solitons and the Inverse Problem Method, SIAM, Philadelphia (1981). · Zbl 0472.35002
[67] Dodd R., Eilbeck J., Gibbon J., and Morris H., Solitons and Nonlinear Wave Equations, Acad. Press, London (1982). · Zbl 0496.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.