×

Asymptotic estimates of large solutions to the infinity Laplacian equations. (English) Zbl 1537.35078

Summary: The article is intend to study the asymptotic behavior of the large solutions near the boundary to the following infinity Laplace equation \(\triangle_{\infty}^h u =b(x)f(u)\), \(x\in \Omega\), \(u|_{\partial\Omega}=+\infty\), where \(\triangle_{\infty}^h u:= |Du|^{h-3}\langle D^2 uDu, Du\rangle\) for all \(h>1\), \(\Omega\) is a bounded domain with smooth boundary in \(\mathbb{R}^N\), \(b \in C(\bar{\Omega})\) which is positive in \(\Omega\), and \(f\in C^1 (0,\infty)\) is positive increasing. The main feature of this paper is that the nonlinearity \(f\) is regularly varying at infinity with the critical index \(h\).

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35J60 Nonlinear elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
Full Text: DOI

References:

[1] Li, C.; Liu, F., Large solutions of a class of degenerate equations associated with infinity Laplacian, Adv. Nonlinear Stud., 22, 67-87, 2022 · Zbl 1485.35193 · doi:10.1515/ans-2022-0005
[2] Crandall, M.; Lions, P., Viscosity solutions and Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277, 1-42, 1983 · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[3] Crandall, M.; Evans, L.; Lions, P., Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 282, 487-502, 1984 · Zbl 0543.35011 · doi:10.1090/S0002-9947-1984-0732102-X
[4] Crandall, M.; Ishii, H.; Lions, P., User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27, 1-67, 1992 · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[5] Caselles, V.; Morel, J.; Sbert, C., An axiomatic approach to image interpolation, IEEE Trans. Image Process., 7, 376-386, 1998 · Zbl 0993.94504 · doi:10.1109/83.661188
[6] Elmoataz, A.; Toutain, M.; Tenbrinck, D., On the p-Laplacian and infinity-Laplacian on graphs with applications in image and data processing, SIAM J. Imaging Sci., 8, 2412-2451, 2015 · Zbl 1330.35488 · doi:10.1137/15M1022793
[7] Evans, L.; Gangbo, W., Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Am. Math. Soc., 137, 1-66, 1999 · Zbl 0920.49004
[8] Azorero, J.; Manfredi, J.; Peral, I.; Rossi, J., The Neumann problem for the \(\infty \)-Laplacian and the Monge-Kantorovich mass transfer problem, Nonlinear Anal.: Theory Methods Appl., 66, 349-366, 2007 · Zbl 1387.35286 · doi:10.1016/j.na.2005.11.030
[9] Aronsson, G., Minimization problems for the functional \(\sup \limits_xF\left(x, f(x), f^{\prime }(x)\right),\), Ark. Mat., 6, 33-53, 1965 · Zbl 0156.12502 · doi:10.1007/BF02591326
[10] Jensen, R., Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal., 123, 1, 51-74, 1993 · Zbl 0789.35008 · doi:10.1007/BF00386368
[11] Díaz, G.; Díaz, J., Uniqueness of the boundary behavior for large solutions to a degenerate elliptic equation involving the Laplacian, Rev. R. Acad. Cien. Ser. A Mat., 97, 425-430, 2003
[12] Aronson, G.; Crandall, M.; Juutinen, P., A tour of the theory of absolute minimizing functions, Bull. Am. Math. Soc., 41, 439-505, 2004 · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
[13] Crandall, M.: A visit with the 1-Laplace equation. In: Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Math., vol. 1927, pp. 75-122. Springer, Berlin (2008) · Zbl 1357.49112
[14] Juutinen, P.; Rossi, J., Large solutions for the infinity Laplacian, Adv. Calc. Var., 1, 271-289, 2008 · Zbl 1158.35371 · doi:10.1515/ACV.2008.011
[15] Mohammed, A.; Mohammed, S., Boundary blow-up solutions to degenerate elliptic equations with non-monotone inhomogeneous terms, Nonlinear Anal., 75, 3249-3261, 2012 · Zbl 1241.35101 · doi:10.1016/j.na.2011.12.026
[16] Mohammed, A.; Mohammed, S., On boundary blow-up solutions to equations involving the \(\infty \)-Laplacian, Nonlinear Anal., 74, 5238-5252, 2011 · Zbl 1223.35141 · doi:10.1016/j.na.2011.04.022
[17] Benyam, M., Mohammed, A.: Infinity-Laplacian type equations and their associated Dirichlet problems. Complex Var Elliptic Equ. 65, 1139-1169 (2020) · Zbl 1442.35124
[18] Benyam, M.; Mohammed, A., Comparison principles for infinity-Laplace equations in Finsler metrics, Nonlinear Anal., 190, 2020 · Zbl 1433.35100 · doi:10.1016/j.na.2019.111605
[19] Wang, W.; Gong, H.; Zheng, S., Asymptotic estimates of boundary blow-up solutions to the infinity Laplace equations, J. Differ. Equ., 256, 3721-3742, 2014 · Zbl 1287.35038 · doi:10.1016/j.jde.2014.02.018
[20] Wang, W.; Gong, H.; He, X.; Zheng, S., Asymptotic boundary estimates to infinity Laplace equations with \(\Gamma \)-varying nonlinearity, J. Math. Anal. Appl., 436, 39-65, 2016 · Zbl 1335.35072 · doi:10.1016/j.jmaa.2015.11.046
[21] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity Laplacian, J. Am. Math. Soc., 22, 167-210, 2009 · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[22] Lu, G.; Wang, P., A PDE perspective of the normalized infinity Laplacian, Commun. Part. Differ. Equ., 33, 1788-1817, 2008 · Zbl 1157.35388 · doi:10.1080/03605300802289253
[23] Lu, G.; Wang, P., Infinity Laplace equation with non-trivial right-hand side, Electron. J. Differ. Equ., 77, 517-532, 2010 · Zbl 1194.35194
[24] Lu, G.; Wang, P., A uniqueness theorem for degenerate elliptic equations, Semi. Interdiscipl. Mat., 7, 207-222, 2008 · Zbl 1187.35109
[25] Barron, E.; Evans, L.; Jensen, R., The infinity Laplacian, Aronsson’s equation and their generalizations, Trans. Am. Math. Soc., 360, 77-101, 2008 · Zbl 1125.35019 · doi:10.1090/S0002-9947-07-04338-3
[26] Evans, L., The 1-Laplacian, the infinity Laplacian and differential games, Contemp. Math., 446, 245-254, 2007 · Zbl 1200.35114 · doi:10.1090/conm/446/08634
[27] Rossi, J., Tug-of-war games and PDEs, Proc. R. Soc. Edinb. Sect. A, 141, 319-369, 2011 · Zbl 1242.35091 · doi:10.1017/S0308210510000041
[28] Díaz, G., Large solutions of elliptic semilinear equations non-degenerate near the boundary, Commun. Pure Appl. Ann., 22, 686-735, 2023 · Zbl 1514.35192 · doi:10.3934/cpaa.2023006
[29] Díaz, G.; Letelier, R., Explosive solutions of quasilinear elliptic equations: existence and uniqueness, Nonlinear Anal., 20, 97-125, 1993 · Zbl 0793.35028 · doi:10.1016/0362-546X(93)90012-H
[30] Alarcón, S.; Díaz, G.; Rey, J., Large solutions of elliptic semilinear equations in the borderline case. An exhaustive and intrinsic point of view, J. Math. Anal. Appl., 431, 365-405, 2015 · Zbl 1321.35051 · doi:10.1016/j.jmaa.2015.05.068
[31] Cîrstea, F.; Rǎdulescu, V., Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C. R. Acad. Sci. Paris, Sér. I, 335, 447-452, 2002 · Zbl 1183.35124 · doi:10.1016/S1631-073X(02)02503-7
[32] Rǎdulescu, V.: Singular phenomena in nonlinear elliptic problems: from blow-up boundary solutions to equations with singular nonlinearities. In: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. IV, pp. 485-593. Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2007) · Zbl 1193.35053
[33] Zhang, Z.; Ma, Y.; Mi, L.; Li, X., Blow-up rates of large solutions for elliptic equations, J. Differ. Equ., 249, 180-199, 2010 · Zbl 1191.35137 · doi:10.1016/j.jde.2010.02.019
[34] Mi, L.; Liu, B., Second order expansion for blowup solutions of semilinear elliptic problems, Nonlinear Anal., 75, 2591-2613, 2012 · Zbl 1253.35057 · doi:10.1016/j.na.2011.11.002
[35] Mi, L., Blow-up rates of large solutions for infinity Laplace equations, Appl. Math. Comput., 298, 36-44, 2017 · Zbl 1411.35119
[36] Maric, V., Regular Variation and Differential Equations, Lecture Notes in Math, 2000, Berlin: Springer, Berlin · Zbl 0946.34001 · doi:10.1007/BFb0103952
[37] Resnick, S., Extreme Values, Regular Variation, and Point Processes, 1987, New York, Berlin: Springer, New York, Berlin · Zbl 0633.60001 · doi:10.1007/978-0-387-75953-1
[38] Seneta, R.: Regular varying functions, Lecture Notes in Math, vol. 508. Springer (1976) · Zbl 0324.26002
[39] Bandle, C.; Marcus, M., Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math., 58, 9-24, 1992 · Zbl 0802.35038 · doi:10.1007/BF02790355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.