×

Turing patterns induced by self-diffusion in a predator-prey model with schooling behavior in predator and prey. (English) Zbl 1537.35059

Summary: This article considers a reaction-diffusion predator-prey model with schooling behavior both in predator and prey species and subject to the homogeneous Neumann boundary condition on a square domain. With the help of the standard linearized analysis, the spatially homogeneous Hopf bifurcation curve and the Turing bifurcation curve of the unique constant positive steady state are obtained. These curves divide the existence domain of the constant positive steady state of the model into the stable, the Hopf unstable, the Turing unstable and the Hopf-Turing unstable regions. When the parameters are in the Turing unstable domain and near the Turing bifurcation curve, by applying the multiple-scale analysis and the successive approximations, the amplitude equations of the system near the constant steady state are derived. Meanwhile, the classification and stability of the patterns of the system are presented in terms of the existence and stability of the stationary solutions of the derived amplitude equations. Numerical simulations show that the presented model can exhibit complicated dynamical behaviors and may help us better understand the interaction between two species.

MSC:

35B36 Pattern formations in context of PDEs
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35K57 Reaction-diffusion equations
92D40 Ecology

Software:

PRED_PREY
Full Text: DOI

References:

[1] Abid, W.; Yafia, R.; Aziz-Alaoui, MA; Bouhafa, H.; Abichou, A., Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain, Appl. Math. Comput., 260, 292-313 (2015) · Zbl 1410.92092
[2] Ajraldi, V.; Pittavino, M.; Venturino, E., Modeling herd behavior in population systems, Nonlinear Anal. RWA, 12, 2319-2333 (2011) · Zbl 1225.49037 · doi:10.1016/j.nonrwa.2011.02.002
[3] Alidousti, J.; Ghafari, E., Dynamic behavior of a fractional order prey-predator model with group defense, Chaos Solitons Fractals, 134, 109688 (2020) · Zbl 1483.92107 · doi:10.1016/j.chaos.2020.109688
[4] Banerjee, M.; Banerjee, S., Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model, Math. Biosci., 236, 64-76 (2012) · Zbl 1375.92077 · doi:10.1016/j.mbs.2011.12.005
[5] Banerjee, M.; Petrovskii, S., Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system, Theor. Ecol., 4, 37-53 (2011) · doi:10.1007/s12080-010-0073-1
[6] Baurmann, M.; Gross, T.; Feudel, U., Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theor. Biol., 245, 220-229 (2007) · Zbl 1451.92248 · doi:10.1016/j.jtbi.2006.09.036
[7] Fernandes, RI; Bialecki, B.; Fairweather, G., An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems on evolving domains, Comput. Phys., 299, 561-580 (2015) · Zbl 1352.65393 · doi:10.1016/j.jcp.2015.07.016
[8] Gambino, G.; Lombardo, MC; Sammartino, M., Pattern formation driven by cross-diffusion in a 2-D domain, Nonlinear Anal. RWA, 14, 1755-1779 (2013) · Zbl 1270.35088 · doi:10.1016/j.nonrwa.2012.11.009
[9] Garvie, MR, Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB, Bull. Math. Biol., 69, 931-956 (2007) · Zbl 1298.92081 · doi:10.1007/s11538-006-9062-3
[10] Jiang, HP, Turing bifurcation in a diffusive predator-prey model with schooling behavior, Appl. Math. Lett., 96, 230-235 (2019) · Zbl 1423.92219 · doi:10.1016/j.aml.2019.05.010
[11] Klausmeier, CA, Regular and irregular patterns in semiarid vegetation, Science, 284, 1826-1828 (1999) · doi:10.1126/science.284.5421.1826
[12] Leppänen, T.: PhD thesis, Helsinki University of Technology, Finland (2004)
[13] Levin, SA; Segal, LA, Hypothesis for origin of planktonic patchiness, Nature, 259, 659 (1976) · doi:10.1038/259659a0
[14] Lotka, AJ, Elements of Physical Biology (1925), New York: Williams and Wilkins Co., New York · JFM 51.0416.06
[15] May, RM, Stability and Complexity in Model Ecosystems (1973), Princeton: Princeton University Press, Princeton · Zbl 0253.92006
[16] Manna, D.; Maiti, A.; Samanta, GP, Analysis of a predator-prey model for exploited fish populations with schooling behavior, Appl. Math. Comput., 317, 35-48 (2018) · Zbl 1426.92056
[17] Melchionda, D.; Pastacaldi, E.; Perri, C.; Banerjee, M.; Venturino, E., Social behavior-induced multistability in minimal competitive ecosystems, J. Theor. Biol., 439, 24-38 (2017) · Zbl 1397.92760 · doi:10.1016/j.jtbi.2017.11.016
[18] Murray, JD, Mathematical Biology II (1993), Heidelberg: Springer, Heidelberg · Zbl 0779.92001 · doi:10.1007/978-3-662-08542-4
[19] Ouyang, Q., Pattern Formation in Reaction-diffusion Systems (2000), Shanghai: Shanghai Sci-Tech Education Publishing House, Shanghai
[20] Ouyang, Q.; Gunaratne, GH; Swinney, HL, Rhombic patterns: broken hexagonal symmetry, Chaos, 3, 4, 707-711 (1993) · doi:10.1063/1.165931
[21] Pascual, M., Diffusion-induced chaos in a spatial predator-prey system, Proc. R. Soc. Lond. B, 251, 1-7 (1993) · doi:10.1098/rspb.1993.0001
[22] Petrovskii, SV; Malchow, H., A minimal model of pattern formation in a prey-predator system, Math. Comput. Model., 29, 49-63 (1999) · Zbl 0990.92040 · doi:10.1016/S0895-7177(99)00070-9
[23] Rietkerk, M.; Koppe, JVD, Regular pattern formation in real ecosystems, Trends Ecol. Evol., 23, 3, 169-175 (2008) · doi:10.1016/j.tree.2007.10.013
[24] Sherratt, JA; Eagan, BT; Lewis, MA, Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality?, Philos. Trans. R. Soc. Lond. B, 352, 21-38 (1997) · doi:10.1098/rstb.1997.0003
[25] Sherratt, JA; Lewis, MA; Fowler, AC, Ecological chaos in the wake of invasion, Proc. Natl. Acad. Sci. USA, 92, 2524-2528 (1995) · Zbl 0819.92024 · doi:10.1073/pnas.92.7.2524
[26] Song, YL; Yang, R.; Sun, GQ, Pattern dynamics in a Gierer-Meinhardt model with a saturating term, Appl. Math. Model., 46, 476-491 (2017) · Zbl 1443.92033 · doi:10.1016/j.apm.2017.01.081
[27] Song, YL; Zou, XF, Bifurcation analysis of a diffusive ratio-dependent predator-prey model, Nonlinear Dyn., 78, 49-70 (2014) · Zbl 1314.92144 · doi:10.1007/s11071-014-1421-2
[28] Sun, G., Pattern formation of an epidemic model with diffusion, Nonlinear Dyn., 69, 1097-1104 (2012) · doi:10.1007/s11071-012-0330-5
[29] Sun, G.; Jin, Z.; Liu, Q.; Li, L., Pattern formation in a spatial S-I model with non-linear incidence rates, J. Stat. Mech. Theory Exp., 07, P11011 (2007) · doi:10.1088/1742-5468/2007/11/P11011
[30] Tang, XS; Song, YL, Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior, Appl. Math. Comput., 254, 375-391 (2015) · Zbl 1410.37092
[31] Turing, AM, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 237, 37-72 (1952) · Zbl 1403.92034
[32] Verhulst, PF, Notice sur la loi que la population poursuit dans son accroissement, Corresp. Math. Phys., 10, 113-121 (1838)
[33] Volterra, V.: Variazionie fluttuazioni del numero d’individui in specie animali conviventi, Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2, 31-113 (1926) · JFM 52.0450.06
[34] Xie, B., Wang, Z., Xue, Y.: Pattern formation in a predator-prey model with both cross diffusion and time delay, Abstr. Appl. Anal. (2014) 2014 · Zbl 1406.92535
[35] Xie, ZF, Turing instability in a coupled predator-prey model with different Holling type functional responses, Discrete Contin. Dyn. Syst. Ser. S, 4, 1621-1628 (2012) · Zbl 1214.92072
[36] Yan, XP; Chen, JY; Zhang, CH, Dynamics analysis of a chemical reaction-diffusion model subject to Degn-Harrison reaction scheme, Nonlinear Anal. Real World Appl., 48, 161-181 (2019) · Zbl 1428.35634 · doi:10.1016/j.nonrwa.2019.01.005
[37] Yang, JG; Zhang, TH; Yuan, SL, Turing pattern induced by cross-diffusion in a predator-prey model with pack predation-herd behavior, Int. J. Bifur. Chaos, 7, 1-22 (2020) · Zbl 1448.92257
[38] Yi, FQ; Wei, JJ; Shi, JP, Bifurcation and spatio-temporal patterns in a homogeneous diffusive predator-prey system, Differ. Equ., 246, 1944-1977 (2009) · Zbl 1203.35030 · doi:10.1016/j.jde.2008.10.024
[39] Zhang, R.; Yu, X.; Zhu, J.; Loula, AFD, Direct discontinuous Galerkin method for nonlinear reaction-diffusion systems in pattern formation, Appl. Math. Model., 38, 1612-1621 (2014) · Zbl 1427.65272 · doi:10.1016/j.apm.2013.09.008
[40] Zhang, T.; Zang, H., Delay-induced turing instability in reaction-diffusion equations, Phys. Rev. E, 90, 052908 (2014) · doi:10.1103/PhysRevE.90.052908
[41] Zhao, H.; Huang, X.; Zhang, X., Turing instability and pattern formation of neural networks with reaction-diffusion terms, Nonlinear Dyn., 76, 115-124 (2014) · Zbl 1319.92010 · doi:10.1007/s11071-013-1114-2
[42] Zhao, H.; Zhang, X.; Huang, X., Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion, Appl. Math. Comput., 266, 462-480 (2015) · Zbl 1410.37089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.