×

A fractional Hardy-Sobolev type inequality with applications to nonlinear elliptic equations with critical exponent and Hardy potential. (English) Zbl 1537.35020

Summary: In this paper we consider the attainability of the optimal constant \(S(N,p,s,\mu)\) associated to the fractional Hardy-Sobolev type embedding which is defined as \[ S(N,p,s,\mu): = \inf\limits_{u\in\dot{W}^{s,p}(\mathbb{R}^N)\backslash\{0\}} \frac{\int_{\mathbb{R}^N} \int_{\mathbb{R}^N}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy-\mu\int_{\mathbb{R}^N}\frac{|u|^p} {|x|^{ps}}dx}{\big(\int_{\mathbb{R}^N}|u|^{p^{\ast}_s}dx\big)^{\frac{p}{p^{\ast}_s}}}, \] where \(s\in(0,1)\), \(p >1\) and \(N>ps\), \(0\leq\mu<\mu_H\), the latter being the best constant in the fractional Hardy inequality on \(\mathbb{R}^N\), \(p_s^{\ast} = \frac{Np}{N-ps}\) is the fractional critical Sobolev exponent. The technique that we use to prove the existence of extremals for \(S(N,p,s,\mu)\) is based on blow-up analysis argument combined with a variational method. Further, as an application of the inequality, we prove an existence result for the critical fractional \(p\)-Laplacian equation with Hardy potential and involving continuous nonlinearities having quasicritical growth.

MSC:

35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
35A15 Variational methods applied to PDEs
35B33 Critical exponents in context of PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] F. J. E. H. Almgren Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2, 683-773, 1989 · Zbl 0688.46014 · doi:10.1090/S0894-0347-1989-1002633-4
[2] C. O. M. A. S. Alves Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254, 1977-1991, 2013 · Zbl 1263.35076 · doi:10.1016/j.jde.2012.11.013
[3] R. B. J. C. O. H. Assunção Silva Miyagaki, A fractional \(p\)-Laplacian problem with multiple critical Hardy-Sobolev nonlinearities, Milan J. Math., 88, 65-97, 2020 · Zbl 1442.35162 · doi:10.1007/s00032-020-00308-5
[4] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry, 11, 573-598, 1976 · Zbl 0371.46011
[5] H. P.-L. Berestycki Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82, 313-345, 1983 · Zbl 0533.35029 · doi:10.1007/BF00250555
[6] J. F. Bonder, N. Saintier and A. Silva, The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis-Nirenberg problem, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 52, 25 pp. · Zbl 1407.35201
[7] L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality, Calc. Var. Partial Differential Equations, 55 (2016), Art. 23, 32 pp. · Zbl 1350.46024
[8] L. M. Brasco Squassina, Optimal solvability for a nonlocal problem at critical growth, J. Differential Equations, 264, 2242-2269, 2018 · Zbl 1386.35428 · doi:10.1016/j.jde.2017.10.019
[9] H. E. Brézis Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 486-490, 1983 · Zbl 0526.46037 · doi:10.1090/S0002-9939-1983-0699419-3
[10] L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275, http://www.numdam.org/item/?id = CM_1984__53_3_259_0. · Zbl 0563.46024
[11] L. L. Caffarelli Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260, 2007 · Zbl 1143.26002 · doi:10.1080/03605300600987306
[12] M. P. Caponi Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional \(p\)-Laplacian equations, Ann. Mat. Pura Appl., 195, 2099-2129, 2016 · Zbl 1359.35212 · doi:10.1007/s10231-016-0555-x
[13] W. C. B. Chen Li Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59, 330-343, 2006 · Zbl 1093.45001 · doi:10.1002/cpa.20116
[14] W. S. M. Chen Mosconi Squassina, Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal., 275, 3065-3114, 2018 · Zbl 1402.35113 · doi:10.1016/j.jfa.2018.02.020
[15] A. N. K. Cotsiolis Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295, 225-236, 2004 · Zbl 1084.26009 · doi:10.1016/j.jmaa.2004.03.034
[16] S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of \(\mathbb{R}^N \), Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa, 2017. viii+152 pp. ISBN: 978-88-7642-600-1; 978-88-7642-601-8. · Zbl 1375.49001
[17] S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations, 55 (2016), Art. 99, 29 pp. · Zbl 1361.35191
[18] R. P. F. Filippucci Pucci Robert, On a \(p\)-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91, 156-177, 2009 · Zbl 1170.35045 · doi:10.1016/j.matpur.2008.09.008
[19] A. P. Fiscella Pucci, Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud., 17, 429-456, 2017 · Zbl 1375.35180 · doi:10.1515/ans-2017-6021
[20] A. P. Fiscella Pucci, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35, 350-378, 2017 · Zbl 1372.35335 · doi:10.1016/j.nonrwa.2016.11.004
[21] A. P. Fiscella Pucci, On certain nonlocal Hardy-Sobolev critical elliptic Dirichlet problems, Adv. Differential Equations, 21, 571-599, 2016 · Zbl 1357.35283
[22] A. E. Fiscella Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94, 156-170, 2014 · Zbl 1283.35156 · doi:10.1016/j.na.2013.08.011
[23] R. L. R. Frank Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255, 3407-3430, 2008 · Zbl 1189.26031 · doi:10.1016/j.jfa.2008.05.015
[24] N. S. Ghoussoub Shakerian, Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud., 15, 527-555, 2015 · Zbl 1336.35357 · doi:10.1515/ans-2015-0302
[25] N. C. Ghoussoub Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352, 5703-5743, 2000 · Zbl 0956.35056 · doi:10.1090/S0002-9947-00-02560-5
[26] E. H. Lieb and M. Loss, Analysis. Second edition. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. xxii+346 pp. · Zbl 0966.26002
[27] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1, 145-201, 1985 · Zbl 0704.49005 · doi:10.4171/rmi/6
[28] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana, 1, 45-121, 1985 · Zbl 0704.49006 · doi:10.4171/rmi/12
[29] S. A. Marano and S. J. N. Mosconi, Asymptotics for optimizers of the fractional Hardy-Sobolev inequality, Commun. Contemp. Math., 21 (2019), 1850028, 33 pp. · Zbl 1430.35006
[30] J. G. Mawhin Molica Bisci, A Brezis-Nirenberg type result for a nonlocal fractional operator, J. Lond. Math. Soc. (2), 95, 73-93, 2017 · Zbl 1398.35276 · doi:10.1112/jlms.12009
[31] S. Mosconi, K. Perera, M. Squassina and Y. Yang, The Brezis-Nirenberg problem for the fractional p-Laplacian, Calc. Var. Partial Differential Equations, 55 (2016), Art. 105, 25 pp. · Zbl 1361.35198
[32] S. M. Mosconi Squassina, Nonlocal problems at nearly critical growth, Nonlinear Anal., 136, 84-101, 2016 · Zbl 1337.35053 · doi:10.1016/j.na.2016.02.012
[33] R. Musina and A. I. Nazarov, A note on higher order fractional Hardy-Sobolev inequalities, Nonlinear Anal., 203 (2021), Paper No. 112168, 3 pp. · Zbl 1458.35010
[34] E. G. E. Di Nezza Palatucci Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573, 2012 · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[35] G. A. Palatucci Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50, 799-829, 2014 · Zbl 1296.35064 · doi:10.1007/s00526-013-0656-y
[36] P. P. Piersanti Pucci, Entire solutions for critical p-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat., 62, 3-36, 2018 · Zbl 1423.35411 · doi:10.5565/PUBLMAT6211801
[37] S. N. Rastegarzadeh Nyamoradi, Existence of positive solutions for Hardy nonlocal fractional elliptic equations involving critical nonlinearities, Topol. Methods Nonlinear Anal., 53, 731-746, 2019 · Zbl 1425.35223 · doi:10.12775/tmna.2019.021
[38] R. E. Servadei Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367, 67-102, 2015 · Zbl 1323.35202 · doi:10.1090/S0002-9947-2014-05884-4
[39] Y. Shen, Multiplicity of positive solutions to a critical fractional equation with Hardy potential and concave-convex nonlinearities, Complex Var. Elliptic Equ., 67, 2152-2180, 2022 · Zbl 1495.35203 · doi:10.1080/17476933.2021.1916922
[40] Y. S. Shen, The Brezis-Nirenberg problem for the fractional \(p\)-Laplacian in unbounded domains, Acta Math. Sin. (Engl. Ser.), 39, 2181-2206, 2023 · doi:10.1007/s10114-023-2108-8
[41] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-162, 1977 · Zbl 0356.35028 · doi:10.1007/BF01626517
[42] C. A. Stuart, Locating Cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 15, 569-588, 2011 · Zbl 1232.58007
[43] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110, 353-372, 1976 · Zbl 0353.46018 · doi:10.1007/BF02418013
[44] C. J. J. Wang Yang Zhou, Solutions for a nonlocal problem involving a Hardy potential and critical growth, J. Anal. Math., 144, 261-303, 2021 · Zbl 1481.35200 · doi:10.1007/s11854-021-0181-4
[45] X. Y. Wang Shen, Existence results for fractional Brezis-Nirenberg type problems in unbounded domains, Topol. Methods Nonlinear Anal., 60, 517-546, 2022 · Zbl 1509.35363
[46] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Boston, 1996. · Zbl 0856.49001
[47] M. B. V. D. Xiang Zhang Rădulescu, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations, 260, 1392-1413, 2016 · Zbl 1332.35387 · doi:10.1016/j.jde.2015.09.028
[48] J. Yang, Fractional Sobolev-Hardy inequality in \(\mathbb{R}^N \), Nonlinear Anal., 119, 179-185, 2015 · Zbl 1328.35288 · doi:10.1016/j.na.2014.09.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.