×

The fundamental solution to \(\Box_b\) on quadric manifolds with nonzero eigenvalues and null variables. (English) Zbl 1537.32132

Summary: We prove sharp pointwise bounds on the complex Green operator and its derivatives on a class of embedded quadric manifolds of high codimension. In particular, we start with the class of quadrics that we previously analyzed [the authors, Trans. Am. Math. Soc., Ser. B 10, 507–541 (2023; Zbl 1517.32120)] – ones whose directional Levi forms are nondegenerate, and add in null variables. The null variables do not substantially affect the estimates or analysis at the form levels for which \(\Box_b\) is solvable and hypoelliptic. In the nonhypoelliptic degrees, however, the estimates and analysis are substantially different. In the earlier paper, when hypoellipticity of \(\Box_b\) failed, so did solvability. Here, however, we show that if there is at least one null variable, \( \Box_b\) is always solvable, and the estimates are qualitatively different than in the other cases. Namely, the complex Green operator has blow-ups off of the diagonal. We also characterize when a quadric \(M\) whose Levi form vanishes on a complex subspace admits a \(\Box_b\)-invariant change of coordinates so that \(M\) presents with a null variable.

MSC:

32V20 Analysis on CR manifolds
32W10 \(\overline\partial_b\) and \(\overline\partial_b\)-Neumann operators

Citations:

Zbl 1517.32120

References:

[1] 10.1016/S0021-7824(00)00169-0 · Zbl 0959.35035 · doi:10.1016/S0021-7824(00)00169-0
[2] 10.1142/S0129167X17400067 · Zbl 1380.32036 · doi:10.1142/S0129167X17400067
[3] ; Boggess, Albert, CR manifolds and the tangential Cauchy-Riemann complex, 1991 · Zbl 0760.32001
[4] 10.1090/S0002-9939-08-09725-6 · Zbl 1166.32023 · doi:10.1090/S0002-9939-08-09725-6
[5] 10.1007/s12220-010-9146-z · Zbl 1222.32058 · doi:10.1007/s12220-010-9146-z
[6] 10.1007/s12220-012-9303-7 · Zbl 1277.32048 · doi:10.1007/s12220-012-9303-7
[7] 10.1007/s40627-020-00050-z · Zbl 1464.32060 · doi:10.1007/s40627-020-00050-z
[8] 10.1007/s12220-021-00693-2 · Zbl 1482.32031 · doi:10.1007/s12220-021-00693-2
[9] 10.1007/s40627-022-00107-1 · Zbl 1504.32095 · doi:10.1007/s40627-022-00107-1
[10] 10.1090/bproc/77 · Zbl 1487.32201 · doi:10.1090/bproc/77
[11] 10.1090/btran/121 · Zbl 1517.32120 · doi:10.1090/btran/121
[12] 10.1090/amsip/019 · doi:10.1090/amsip/019
[13] 10.1002/cpa.3160270403 · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[14] 10.1090/S0002-9904-1974-13449-X · Zbl 0294.35059 · doi:10.1090/S0002-9904-1974-13449-X
[15] 10.1007/BF02392235 · Zbl 0366.22010 · doi:10.1007/BF02392235
[16] 10.4064/sm-56-2-165-173 · Zbl 0336.22007 · doi:10.4064/sm-56-2-165-173
[17] 10.2307/1970121 · Zbl 0078.08104 · doi:10.2307/1970121
[18] 10.1007/BF01389371 · Zbl 0651.35017 · doi:10.1007/BF01389371
[19] 10.4007/annals.2006.164.649 · Zbl 1126.32031 · doi:10.4007/annals.2006.164.649
[20] 10.1006/jfan.2000.3714 · Zbl 0974.22007 · doi:10.1006/jfan.2000.3714
[21] 10.1016/S0022-1236(03)00176-9 · Zbl 1043.32021 · doi:10.1016/S0022-1236(03)00176-9
[22] 10.1090/S0002-9947-2011-05311-0 · Zbl 1241.26024 · doi:10.1090/S0002-9947-2011-05311-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.