×

Improved homological stability for certain general linear groups. (English) Zbl 1537.19001

Summary: We prove that the general linear groups of the integers, Gaussian integers, and Eisenstein integers satisfy homological stability of slope 1 when using \(\mathbb{Z}[1/2]\)-coefficients and of slope \(2/3\) when using \(\mathbb{Z}\)-coefficients.
{© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.}

MSC:

19B14 Stability for linear groups
55P48 Loop space machines and operads in algebraic topology
20J05 Homological methods in group theory

Software:

MathOverflow

References:

[1] A.Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4)7 (1974), 235-272 (1975), MR0387496. · Zbl 0316.57026
[2] A.Borel, Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980), Progr. Math., vol. 14, Birkhäuser, Boston, MA, 1981, pp. 21-55, MR642850. · Zbl 0483.57026
[3] R. M.Charney, Homology stability for \({\rm GL}\sb{n}\) of a Dedekind domain, Invent. Math.56 (1980), no. 1, 1-17, MR557579. · Zbl 0427.18013
[4] T.Church, B.Farb, and A.Putman, A stability conjecture for the unstable cohomology of \({\rm SL}_n\mathbb{Z} \), mapping class groups, and \({\rm Aut}(F_n)\), Algebraic Topology: Applications and New Directions, Contemporary Mathematics, vol. 620, Amer. Math. Soc., Providence, RI, 2014, pp. 55-70, MR3290086. · Zbl 1377.11065
[5] T.Church and A.Putman, The codimension‐one cohomology of \({\rm SL}_n\mathbb{Z} \), Geom. Topol.21 (2017), no. 2, 999-1032. MR3626596. · Zbl 1414.11067
[6] P. M.Cohn, On the structure of the \({\rm GL}\sb{2}\) of a ring, Inst. Hautes Études Sci. Publ. Math. (1966), no. 30, 5-53, MR207856.
[7] A.Djament and C.Vespa, Foncteurs faiblement polynomiaux, Int. Math. Res. Not. IMRN (2019), no. 2, 321-391, MR3903561. · Zbl 1433.18003
[8] M. DutourSikirić, H.Gangl, P. E.Gunnells, J.Hanke, A.Schürmann, and D.Yasaki, On the cohomology of linear groups over imaginary quadratic fields, J. Pure Appl. Algebra220 (2016), no. 7, 2564-2589, MR3457984. · Zbl 1408.11051
[9] W. G.Dwyer, Twisted homological stability for general linear groups, Ann. of Math. (2)111 (1980), no. 2, 239-251, MR569072. · Zbl 0404.18012
[10] S.Eilenberg and S. MacLane, On the groups \(H(\Pi,n)\). II. Methods of computation, Ann. of Math. (2)60 (1954), 49-139, MR0065162. · Zbl 0055.41704
[11] P.Elbaz‐Vincent, H.Gangl, and C.Soulé, Perfect forms, K‐theory and the cohomology of modular groups, Adv. Math.245 (2013), 587-624, MR3084439. · Zbl 1290.11104
[12] S.Galatius, A.Kupers, and O.Randal‐Williams, Cellular \({E}_k\)‐algebras, (2018), https://arxiv.org/abs/1805.07184v3.
[13] S.Galatius, A.Kupers, and O.Randal‐Williams, \({E}_\infty \)‐cells and general linear groups of finite fields, (2018), https://arxiv.org/abs/1810.11931v1.
[14] S.Galatius, A.Kupers, and O.Randal‐Williams, \(E_2\)‐cells and mapping class groups, Publ. Math. Inst. Hautes Études Sci.130 (2019), 1-61, MR4028513. · Zbl 1461.55011
[15] S.Galatius, A.Kupers, and O.Randal‐Williams, \({E}_\infty \)‐cells and general linear groups of infinite fields, (2020), https://arxiv.org/abs/2005.05620v1.
[16] J.Giansiracusa, A.Kupers, and B.Tshishiku, Characteristic classes of bundles of K3 manifolds and the Nielsen realization problem, Tunis. J. Math.3 (2021), no. 1, 75-92, MR4103767. · Zbl 1442.19013
[17] J. A.Green, Polynomial representations of \({\rm GL}_n\), augmented ed., Lecture Notes in Mathematics, vol. 830, Springer, Berlin, 2007, With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker, MR2349209. · Zbl 1108.20044
[18] R. C.Gunning, Lectures on modular forms, Annals of Mathematics Studies, vol. 48, Princeton University Press, Princeton, NJ, 1962, Notes by Armand Brumer, MR0132828. · Zbl 0178.42901
[19] I.Horozov, Cohomology of \(GL_4(\mathbb{Z})\) with nontrivial coefficients, Math. Res. Lett.21 (2014), no. 5, 1111-1136, MR3294564. · Zbl 1355.11064
[20] A.Kupers, J.Miller, P.Patzt, and J. C. H.Wilson, On the generalized Bykovskii presentation of Steinberg modules, To appear in Int. Math. Res. Not. IMRN. (2020), https://arxiv.org/abs/2006.10906. · Zbl 1512.11053
[21] R.Lee and R. H.Szczarba, On the homology and cohomology of congruence subgroups, Invent. Math.33 (1976), no. 1, 15-53, MR0422498. · Zbl 0332.18015
[22] H.Maazen, Homology stability for the general linear group, (1979). Utrecht University PhD Dissertation. https://dspace.library.uu.nl/handle/1874/237657
[23] J.Miller, P.Patzt, and D.Petersen, Representation stability, secondary stability, and polynomial functors, (2019), https://arxiv.org/abs/1910.05574v3.
[24] J.Miller, P.Patzt, and A.Putman, On the top‐dimensional cohomology groups of congruence subgroups of SL(n, \( \mathbb{Z})\), Geom. Topol.25 (2021), no. 2, 999-1058, MR4251441. · Zbl 1482.11079
[25] J.Miller, P.Patzt, J. C. H.Wilson, and D.Yasaki, Non‐integrality of some Steinberg modules, J. Topol.13 (2020), no. 2, 441-459, MR4092772. · Zbl 1452.11065
[26] P.Patzt, Central stability homology, Math. Z.295 (2020), no. 3‐4, 877-916, MR4125676. · Zbl 1442.18004
[27] T.Pirashvili, Polynomial functors, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR91 (1988), 55-66. · Zbl 0705.18009
[28] A.Putman and S. V.Sam, Representation stability and finite linear groups, Duke Math. J.166 (2017), no. 13, 2521-2598. · Zbl 1408.18003
[29] O.Randal‐Williams and N.Wahl, Homological stability for automorphism groups, Adv. Math.318 (2017), 534-626, MR3689750. · Zbl 1393.18006
[30] L.Solomon, The Steinberg character of a finite group with BN-pair, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, MA, 1968), 1969, pp. 213-221. · Zbl 0216.08001
[31] C.Soulé, Higher \(K\)‐theory of algebraic integers and the cohomology of arithmetic groups, Cohomology of Groups and Algebraic \(K\)‐Theory, Adv. Lect. Math. (ALM), vol. 12, International Press, Somerville, MA, 2010, Notes by Marco Varisco, pp. 503-517, MR2655187. · Zbl 1204.19001
[32] W.van derKallen, Homology stability for linear groups, Invent. Math.60 (1980), no. 3, 269-295, MR586429. · Zbl 0415.18012
[33] W.van derKallen and E.Looijenga, Spherical complexes attached to symplectic lattices, Geom. Dedicata152 (2011), 197-211, MR2795243. · Zbl 1217.05227
[34] YCor, Abelianization of general linear group of a polynomial ring (2020), https://mathoverflow.net/q/357732.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.