×

Bézoutians and the \(\mathbb{A}^1\)-degree. (English) Zbl 1537.14033

The \(\mathbb{A}^1\)-degree is an analogue in algebraic geometry of the Brouwer degree from topology. It was constructed by F. Morel [in: Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume II: Invited lectures. Zürich: European Mathematical Society (EMS). 1035–1059 (2006; Zbl 1097.14014)] using motivic homotopy theory and assigns a bilinear form to an endomorphism of affine \(n\)-space. The \(\mathbb{A}^1\)-degree has many applications in the fast-growing field of refined enumerative geometry, which aims to obtain refinements of results in enumerative geometry in terms of quadratic forms. One can then often deduce known results by taking e.g. ranks or signatures.
In this paper, the authors give a general algebraic formula for computing \(\mathbb{A}^1\)-degrees in practice. Let \(k\) be a field which is not of characteristic \(2\) and let \(f:\mathbb{A}^n_k\to\mathbb{A}^n_k\) be a morphism. They show that the local \(\mathbb{A}^1\)-degree of \(f\) at a closed point where \(f\) has an isolated zero can be computed as a bilinear form determined by a Bézoutian form, the latter being relatively easy to compute explicitly. If all the zero’s of \(f\) are isolated, they show that the global \(\mathbb{A}^1\)-degree of \(f\) can be computed in terms of a Bézoutian form as well. The statement is deduced from work of Bachmann-Wickelgren [T. Bachmann and K. Wickelgren, J. Inst. Math. Jussieu 22, No. 2, 681–746 (2023; Zbl 1515.14037)] and some computations.
This gives an explicit way to compute \(\mathbb{A}^1\)-degrees, which was later used heavily by Brazelton and others [N. Borisov et al., “\(\mathbb{A}^1\)-Brouwer degrees in Macaulay2”, Preprint, arXiv:2312.00106] in their implementation of computations of \(\mathbb{A}^1\)-degrees in Macaulay2. In the paper itself, there are also several applications: The authors compute an \(\mathbb{A}^1\)-degree which wouldn’t have been easily accessible otherwise (Example 7.2), they prove a formula for the quadratic Euler characteristic of a Grassmanian which was folklore before (section 8) and they use their results to describe various calculation rules for \(\mathbb{A}^1\)-degrees (section 6).
The paper is very well-written and provides a good introduction to Bézoutians, Scheja-Storch forms and \(\mathbb{A}^1\)-degrees. At the end, there is a nice picture of a modified Pascal’s triangle which is used to illustrate a part of the computation for the quadratic Euler characteristic of a Grassmanian.

MSC:

14F42 Motivic cohomology; motivic homotopy theory
55M25 Degree, winding number

References:

[1] 10.1016/j.topol.2022.108108 · Zbl 1494.14020 · doi:10.1016/j.topol.2022.108108
[2] 10.1017/S147474802100027X · Zbl 1515.14037 · doi:10.1017/S147474802100027X
[3] 10.1016/S0764-4442(00)00158-0 · Zbl 1017.14001 · doi:10.1016/S0764-4442(00)00158-0
[4] ; Becker, E.; Cardinal, J. P.; Roy, M.-F.; Szafraniec, Z., Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula, Algorithms in algebraic geometry and applications. Progr. Math., 143, 79 (1996) · Zbl 0873.13013
[5] 10.4310/hha.2021.v23.n1.a1 · Zbl 1456.14027 · doi:10.4310/hha.2021.v23.n1.a1
[6] 10.24033/asens.2172 · Zbl 1419.14025 · doi:10.24033/asens.2172
[7] 10.1007/BF01451367 · Zbl 0099.02101 · doi:10.1007/BF01451367
[8] 10.2307/1971156 · Zbl 0398.57020 · doi:10.2307/1971156
[9] 10.24033/msmf.425 · Zbl 1190.14001 · doi:10.24033/msmf.425
[10] ; Himšiašvili, G. N., The local degree of a smooth mapping, Sakharth. SSR Mecn. Akad. Moambe, 85, 2, 309 (1977) · Zbl 0346.55008
[11] 10.1016/j.top.2004.10.004 · Zbl 1078.19004 · doi:10.1016/j.top.2004.10.004
[12] 10.2140/agt.2014.14.3603 · Zbl 1351.14013 · doi:10.2140/agt.2014.14.3603
[13] 10.1215/00127094-2018-0046 · Zbl 1412.14014 · doi:10.1215/00127094-2018-0046
[14] 10.1112/s0010437x20007691 · Zbl 1477.14085 · doi:10.1112/s0010437x20007691
[15] 10.1016/j.jalgebra.2020.08.018 · Zbl 1505.14105 · doi:10.1016/j.jalgebra.2020.08.018
[16] 10.1007/s40687-021-00260-9 · Zbl 1471.14070 · doi:10.1007/s40687-021-00260-9
[17] 10.4171/dm/797 · Zbl 1465.14008 · doi:10.4171/dm/797
[18] 10.2140/ant.2020.14.1801 · Zbl 1458.14029 · doi:10.2140/ant.2020.14.1801
[19] 10.1007/s00208-020-02120-3 · Zbl 1467.14126 · doi:10.1007/s00208-020-02120-3
[20] ; Milnor, John W., Topology from the differentiable viewpoint (1965) · Zbl 0136.20402
[21] ; Morel, Fabien, An introduction to 𝔸1-homotopy theory, Contemporary developments in algebraic K-theory. ICTP Lecture Notes, 15, 357 (2004) · Zbl 1081.14029
[22] ; Morel, Fabien, 𝔸1-algebraic topology, International Congress of Mathematicians, 1035 (2006) · Zbl 1097.14014
[23] 10.1016/j.aim.2022.108508 · Zbl 1495.14083 · doi:10.1016/j.aim.2022.108508
[24] 10.1007/s40687-023-00392-0 · Zbl 1521.14103 · doi:10.1007/s40687-023-00392-0
[25] 10.1007/s40687-021-00255-6 · Zbl 1469.14047 · doi:10.1007/s40687-021-00255-6
[26] 10.7146/math.scand.a-129287 · Zbl 1498.14051 · doi:10.7146/math.scand.a-129287
[27] ; Scheja, Günter; Storch, Uwe, Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math., 278(279), 174 (1975) · Zbl 0316.13003
[28] 10.1090/tran/8307 · Zbl 1471.14110 · doi:10.1090/tran/8307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.