×

Impacts of diapause eggs on mosquito population suppression based on incompatible or sterile insect technique. (English) Zbl 1536.92174

Summary: Mosquito-borne diseases kill more than 700,000 people a year, and the toll continues to rise. Controlling mosquito population is the key measure to prevent mosquito-borne diseases. Releasing sterile male mosquitoes to suppress wild mosquito population is an environmentally friendly and efficient method, which has been proven to successfully eliminate wild mosquitoes in laboratory, but it is difficult to achieve such effectiveness in the field. The diapause of mosquito eggs is considered an important factor hindering mosquito population suppression. In this paper, we formulate an ordinary differential equation model to discuss the impact of diapause eggs on mosquito population suppression. We prove that there exists at most one periodic solution in our model, and obtain sufficient and necessary conditions for the existence of an unique periodic solution. We give numerical simulations to confirm our theoretical results.

MSC:

92D45 Pest management
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI

References:

[1] Kyle, J. L.; Harris, E., Global spread and persistence of dengue, Annu. Rev. Microbiol., 62, 71-92, 2008
[2] Rasmussen, S. A.; Jamieson, D. J.; Honein, M. A.; Petersen, L. R., Zika virus and birth defects-reviewing the evidence for causality, N. Engl. J. Med., 374, 20, 1981-1987, 2016
[3] Ooi, E. E.; Goh, K. T.; Gubler, D. J., Dengue prevention and 35 years of vector control in Singapore, Emerg. Infect. Diseases, 12, 6, 887-893, 2006
[4] Cai, L.; Ai, S.; Li, J., Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74, 6, 1786-1809, 2014 · Zbl 1320.34071
[5] Zhang, D.; Sun, Y., Effects of radiation on the fitness, sterility and arbovirus susceptibility of a Wolbachia-free Aedes albopictus strain for use in the sterile insect technique, Pest Manag, Pest Management Science, 79, 4186-4196, 2023
[6] Gong, J.; Li, T., Wolbachia-based strategies for control of agricultural pests, Curr. Opin. Insect Sci., 57, Article 101039 pp., 2023
[7] Huang, M.; Tang, M.; Yu, J.; Zheng, B., A stage structured model of delay differential equations for Aedes mosquito population suppression, Discrete Contin. Dyn. Syst.-A, 40, 6, 3467-3484, 2020 · Zbl 1435.92075
[8] Laven, H., Cytoplasmic inheritance in culex, Nature, 177, 141-142, 1956
[9] Zheng, X.; Zhang, D., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572, 7767, 56-61, 2019
[10] Li, J.; Han, M.; Yu, J., Simple paratransgenic mosquitoes models and their dynamics, Math. Biosci., 306, 20-31, 2018 · Zbl 1411.34067
[11] Li, J.; Yuan, Z., Modelling releases of sterile mosquitoes with different strategies, J. Biol. Dyn., 9, 1, 1-14, 2015 · Zbl 1448.92220
[12] Yu, J., Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differential Equations, 269, 12, 10395-10415, 2020 · Zbl 1457.34084
[13] Yu, J., Modeling mosquito population suppression based on delay differentail equations, SIAM J. Appl. Math., 78, 6, 3168-3187, 2018 · Zbl 1401.92171
[14] Yu, J.; Li, J., Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 13, 1, 606-620, 2019 · Zbl 1448.92260
[15] Yu, J.; Li, J., Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differential Equations, 269, 7, 6193-6215, 2020 · Zbl 1444.34103
[16] Zheng, B.; Tang, M.; Yu, J., Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74, 3, 743-770, 2014 · Zbl 1303.92124
[17] Zheng, B.; Yu, J., Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal., 11, 1, 212-224, 2022 · Zbl 1471.92396
[18] Denlinger, D. L.; Armbruster, P. A., Mosquito diapause, Annu. Rev. Entomol., 59, 73-93, 2014
[19] Fischer, S.; Alem, I. S.; De Majo, M. S.; Campos, R. E.; Schweigmann, N., Cold season mortality and hatching behavior of Aedes aegypti L. (Diptera: Culicidae) eggs in Buenos Aires City, Argentina, J. Vector Ecol., 36, 1, 94-99, 2011
[20] Huang, X.; Poelchau, M. F.; Armbruster, P. A., Global transcriptional dynamics of diapause induction in non-blood-fed and blood-fed Aedes albopictus, PLoS Negl. Trop. Dis., 9, 4, Article e0003724 pp., 2015
[21] Jia, P.; Liang, L., A climate-driven mechanistic population model of aedes albopictus with diapause, Parasites Vectors, 9, 175, 2016
[22] Suman, D. S.; Wang, Y.; Gaugler, R., The insect growth regulator pyriproxyfen terminates egg diapause in the asian tiger mosquito, Aedes albopictus, PLoS ONE, 10, 6, Article e0130499 pp., 2015
[23] Liu, F.; Zhou, C.; Lin, P., Studies on the population ecology of aedes albopictus: 5.The seasonal abundance of natural population of aedes albopictus in Guangzhou, Acta Sci. Natur. Univ. Sunyatseni, 29, 2, 118-122, 1990
[24] Xia, D.; Teng, Y.; Chen, X.; Zhou, X., Diapause of Aedes albopictus and the related molecular mechanisms, Chin. J. Parasitol. Parasit. Dis., 34, 3, 282-289, 2016
[25] Zhang, D.; Xi, Z.; Li, Y.; Wang, X., Toward implementation of combined incompatible and sterile insect techniques for mosquito control: Optimized chilling conditions for handling Aedes albopictus male adults prior to release, PLoS Negl. Trop. Dis., 14, 9, Article e0008561 pp., 2020
[26] Zhang, M.; Zhang, D.; Li, Y.; Sun, Q., Water-induced strong protection against acute exposure to low subzero temperature of adult Aedes albopictus, PLoS Negl. Trop. Dis., 13, 2, Article e0007139 pp., 2019
[27] Mori, A.; Oda, T.; Wada, Y., Studies on the egg diapause and overwintering of Aedes albopictus in Nagasaki, Trop. Med., 23, 2, 79-90, 1981
[28] Hu, L.; Huang, M.; Tang, M.; Yu, J.; Zheng, B., Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 106, 32-44, 2015 · Zbl 1343.92482
[29] Hu, L.; Huang, M.; Tang, M.; Yu, J.; Zheng, B., Wolbachia spread dynamics in multi-regimes of environmental conditions, J. Theoret. Biol., 462, 247-258, 2019 · Zbl 1406.92578
[30] Hu, L.; Yang, C.; Hui, Y.; Yu, J., Mosquito control based on pesticides and endosymbiotic bacterium Wolbachia, Bull. Math. Biol., 83, 5, 58, 2021 · Zbl 1466.92186
[31] Huang, M.; Luo, J.; Hu, L.; Zheng, B.; Yu, J., Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theoret. Biol., 440, 1-11, 2018 · Zbl 1400.92490
[32] Zhu, Z.; Zheng, B., Stability and periodicity in a mosquito population suppression model composed of two sub-models, Nonlinear Dynam., 107, 1383-1395, 2022 · Zbl 1517.92021
[33] Hu, L.; Tang, M.; Wu, Z.; Xi, Z.; Yu, J., The threshold infection level for Wolbachia invasion in random environments, J. Differential Equations, 266, 7, 4377-4393, 2019 · Zbl 1406.34072
[34] Li, Y.; Kamara, F., Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLos Negl. Trop. Dis., 8, 11, Article e3301 pp., 2014
[35] Lou, Y.; Liu, K., Modelling diapause in mosquito population growth, J. Math. Biol., 78, 7, 2259-2288, 2019 · Zbl 1411.37070
[36] Liu, Y.; Yu, J.; Li, J., A mosquito population suppression model by releasing Wolbachia-infected males, Bull. Math. Biol., 84, 121, 2022 · Zbl 1498.92318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.