×

Nonlocality, nonlinearity, and time inconsistency in stochastic differential games. (English) Zbl 1536.91042

The article examines control in \(m\)-player nonzero-sum stochastic differential games (SDG) with time inconsistent (TIC) preferences on a time interval \([0,T]\). Each player wants to minimize his/her own cost functional resulting to the Nash equilibrium (NE) point. Time inconsistency means that NE point received at intervals \([s,T]\) and \([t,T]\) may be different on their common part. For such systems, time consistent NE is introduced as follows. Consider some player and assume that controls chosen by all other players are fixed. Then a desired control of this player over a time interval \([0,T]\) must be optimal over each small interval \([t,t+\epsilon]\) if it is chosen over \([t+\epsilon,T]\), \(0 \leq t <T\). This condition must be met for all players. In the paper, the equilibrium Hamilton-Jacobi-Bellman system is obtained that characterizes the time consistent NE of SDG. A general multidimensional Feynman-Kac formula is derived.
Considered SDG form a class of nonlocal fully nonlinear parabolic systems. The paper proves the well-posedness, i.e., existence, uniqueness and stability for the solutions to such systems. The results are first obtained for the linear cases and then extended to the quasilinear and fully nonlinear cases under suitable conditions. Two financial examples of TIC SDG are provided.

MSC:

91A15 Stochastic games, stochastic differential games

References:

[1] Basak, S., & Chabakauri, G. (2010). Dynamic mean‐variance asset allocation. Review of Financial Studies, 23(8), 2970-3016.
[2] Bensoussan, A., & Frehse, J. (2000). Stochastic games for N players. Journal of Optimization Theory and Applications, 105(3), 543-565. · Zbl 0977.91006
[3] Björk, T., Khapko, M., & Murgoci, A. (2017). On time‐inconsistent stochastic control in continuous time. Finance and Stochastics, 21(2), 331-360. · Zbl 1360.49013
[4] Björk, T., & Murgoci, A. (2010). A general theory of Markovian time inconsistent stochastic control problems. SSRN.
[5] Björk, T., & Murgoci, A. (2014). A theory of Markovian time‐inconsistent stochastic control in discrete time. Finance and Stochastics, 18(3), 545-592. · Zbl 1297.49038
[6] Björk, T., Murgoci, A., & Zhou, X. Y. (2014). Mean‐variance portfolio optimization with state‐dependent risk aversion. Mathematical Finance, 24(1), 1-24. · Zbl 1285.91116
[7] Cheridito, P., Soner, H. M., Touzi, N., & Victoir, N. (2007). Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs. Communications on Pure and Applied Mathematics, 60(7), 1081-1110. · Zbl 1121.60062
[8] Dai, M., Jin, H., Kou, S., & Xu, Y. (2021). A dynamic mean‐variance analysis for log returns. Management Science, 67(2), 1093-1108.
[9] Ekeland, I., & Lazrak, A. (2006). Being serious about non‐commitment: subgame perfect equilibrium in continuous time.
[10] Ekeland, I., & Lazrak, A. (2010). The golden rule when preferences are time inconsistent. Mathematics and Financial Economics, 4(1), 29-55. · Zbl 1255.91249
[11] Ekeland, I., Mbodji, O., & Pirvu, T. A. (2012). Time‐consistent portfolio management. SIAM Journal on Financial Mathematics, 3(1), 1-32. · Zbl 1257.91040
[12] Ekeland, I., & Pirvu, T. A. (2008). Investment and consumption without commitment. Mathematics and Financial Economics, 2(1), 57-86. · Zbl 1177.91123
[13] Espinosa, G.‐E., & Touzi, N. (2015). Optimal investment under relative performance concerns. Mathematical Finance, 25(2), 221-257. · Zbl 1403.91310
[14] Ėǐdel’man, S. D. (1969). Parabolic systems. North‐Holland and Pub. Co.Wolters‐Noordhoff. · Zbl 0181.37403
[15] Frederick, S., Loewenstein, G., & O’donoghue, T. (2002). Time discounting and time preference: A critical review. Journal of Economic Literature, 40(2), 351-401.
[16] Friedman, A. (1964). Partial differential equations of parabolic type (1st ed.). Prentice‐Hall. · Zbl 0144.34903
[17] Friedman, A. (1972). Stochastic differential games. Journal of Differential Equations, 11(1), 79-108. · Zbl 0208.39402
[18] Friedman, A. (1976). Stochastic differential equations and applications. Probability and mathematical statistics (Vol. 2). Academic Press. · Zbl 0323.60057
[19] Hamaguchi, Y. (2021a). Extended backward stochastic Volterra integral equations and their applications to time‐inconsistent stochastic recursive control problems. Mathematical Control & Related Fields, 11(2), 197-242.
[20] Hamaguchi, Y. (2021b). Small‐time solvability of a flow of forward‐backward stochastic differential equations. Applied Mathematics & Optimization, 84(1), 567-588. · Zbl 1470.60155
[21] Han, B., Pun, C. S., & Wong, H. Y. (2021). Robust state‐dependent mean‐variance portfolio selection: A closed‐loop approach. Finance and Stochastics, 25(3), 529-561. · Zbl 1471.49028
[22] Han, B., Pun, C. S., & Wong, H. Y. (2022). Robust time‐inconsistent stochastic linear‐quadratic control with drift disturbance. Applied Mathematics & Optimization, 86(1), 4. · Zbl 1492.93198
[23] He, X. D., & Jiang, Z. L. (2021). On the equilibrium strategies for time‐inconsistent problems in continuous time. SIAM Journal on Control and Optimization, 59(5), 3860-3886. · Zbl 1471.91498
[24] He, X. D., & Zhou, X. Y. (2022). Who are I: Time inconsistency and intrapersonal conflict and reconciliation. In G.Yin (ed.) & T.Zariphopoulou (ed.) (Eds.), Stochastic analysis, filtering, and stochastic optimization (pp. 177-208). Springer. A Commemorative Volume to Honor Mark H. A. Davis’s Contributions. · Zbl 1504.91073
[25] Hernández, C., & Possamaï, D. (2023). Me, myself and I: A general theory of non‐Markovian time‐inconsistent stochastic control for sophisticated agents. The Annals of Applied Probability, 33(2), 1396-1458. · Zbl 1525.60073
[26] Hernández, C., & Possamaï, D. (2021). A unified approach to well‐posedness of type‐I backward stochastic Volterra integral equations. Electronic Journal of Probability, 26, 1-35. · Zbl 1470.45021
[27] Hu, Y., Jin, H., & Zhou, X. Y. (2012). Time‐inconsistent stochastic linear-quadratic control. SIAM Journal on Control and Optimization, 50(3), 1548-1572. · Zbl 1251.93141
[28] Hu, Y., Jin, H., & Zhou, X. Y. (2017). Time‐inconsistent stochastic linear‐quadratic control: Characterization and uniqueness of equilibrium. SIAM Journal on Control and Optimization, 55(2), 1261-1279. · Zbl 1414.91340
[29] Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-292. · Zbl 0411.90012
[30] Karoui, N. E., Peng, S., & Quenez, M.‐C. (1997). Backward stochastic differential equations in finance. Mathematical Finance, 7(1), 1-71. · Zbl 0884.90035
[31] Karoui, N. E., Peng, S., & Quenez, M. C. (2001). A dynamic maximum principle for the optimization of recursive utilities under constraints. The Annals of Applied Probability, 11(3), 664-693. · Zbl 1040.91038
[32] Khudyaev, S. (1963). The first boundary‐value problem for non‐linear parabolic equations. In Doklady Akademii Nauk, (Vol. 149, pp. 535-538). Russian Academy of Sciences. · Zbl 0161.30701
[33] Kong, T., Zhao, W., & Zhou, T. (2015). Probabilistic high order numerical schemes for fully nonlinear parabolic PDEs. Communications in Computational Physics, 18(5), 1482-1503. · Zbl 1388.65016
[34] Kruzhkov, S. N., Castro, A., & Morales, M. L. (1975). Schauder‐type estimates and existence theorems for the solution of basic problems for linear and nonlinear parabolic equations. In Doklady Akademii Nauk (Vol. 220, pp. 277-280). Russian Academy of Sciences. · Zbl 0343.35044
[35] Krylov, N. V. (1987). Nonlinear elliptic and parabolic equations of the second order. Mathematics and its applications (Vol. 7, 1st ed.). Springer. · Zbl 0619.35004
[36] Lacker, D., & Zariphopoulou, T. (2019). Mean field and n‐agent games for optimal investment under relative performance criteria. Mathematical Finance, 29(4), 1003-1038. · Zbl 1433.91158
[37] Ladyženskaja, O. A., Solonnikov, V. A., & Ural’ceva, N. N. (1968). Linear and quasi‐linear equations of parabolic type (1st ed.). American Mathematical Society. · Zbl 0174.15403
[38] Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quarterly Journal of Economics, 112(2), 443-478. · Zbl 0882.90024
[39] Landriault, D., Li, B., Li, D., & Young, V. R. (2018). Equilibrium strategies for the mean‐variance investment problem over a random horizon. SIAM Journal on Financial Mathematics, 9(3), 1046-1073. · Zbl 1416.91354
[40] Lazrak, A., Wang, H., & Yong, J. (2023). Time‐inconsistency in linear quadratic stochastic differential games. arXiv: 2304.11577.
[41] Lei, Q., & Pun, C. S. (2020). An extended McKean-Vlasov dynamic programming approach to robust equilibrium controls under ambiguous covariance matrix [Working paper]. Nanyang Technological University.
[42] Lei, Q., & Pun, C. S. (2023). Nonlocal fully nonlinear parabolic differential equations arising in time‐inconsistent problems. Journal of Differential Equations, 358, 339-385. · Zbl 1529.35284
[43] Lieberman, G. M. (1996). Second order parabolic differential equations (1st ed.). World Scientific. · Zbl 0884.35001
[44] Lindensjö, K. (2019). A regular equilibrium solves the extended HJB system. Operations Research Letters, 47(5), 427-432. · Zbl 1476.93161
[45] Lorenzi, L. (2000). Optimal Schauder estimates for parabolic problems with data measurable with respect to time. SIAM Journal on Mathematical Analysis, 32(3), 588-615. · Zbl 0974.35018
[46] Lunardi, A. (1989). Maximal space regularity in nonhoomogeneous initial boundary value parabolic problem. Numerical Functional Analysis and Optimization, 10(3‐4), 323-349. · Zbl 0653.35047
[47] Lunardi, A. (1995). Analytic semigroups and optimal regularity in parabolic problems (1st ed.). Springer. · Zbl 0816.35001
[48] Ma, J., & Yong, J. (1999). Forward‐backward stochastic differential equations and their applications. Lecture notes in mathematics (1st ed.). Springer. · Zbl 0927.60004
[49] Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.
[50] Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous‐time model. Journal of Economic Theory, 3(4), 373-413. · Zbl 1011.91502
[51] Pollak, R. A. (1968). Consistent planning. The Review of Economic Studies, 35(2), 201.
[52] Prato, G. D., & Tubaro, L. (1996). Fully nonlinear stochastic partial differential equations. SIAM Journal on Mathematical Analysis, 27(1), 40-55. · Zbl 0853.60052
[53] Pun, C. S. (2018a). Robust time‐inconsistent stochastic control problems. Automatica, 94, 249-257. · Zbl 1401.93229
[54] Pun, C. S. (2018b). Time‐consistent mean‐variance portfolio selection with only risky assets. Economic Modelling, 75, 281-292.
[55] Pun, C. S., Siu, C. C., & Wong, H. Y. (2016). Non‐zero‐sum reinsurance games subject to ambiguous correlations. Operations Research Letters, 44(5), 578-586. · Zbl 1408.91104
[56] Pun, C. S., & Wong, H. Y. (2016). Robust non‐zero‐sum stochastic differential reinsurance game. Insurance: Mathematics and Economics, 68, 169-177. · Zbl 1369.91094
[57] Sinestrari, E. (1985). On the abstract Cauchy problem of parabolic type in spaces of continuous functions. Journal of Mathematical Analysis and Applications, 107(1), 16-66. · Zbl 0589.47042
[58] Solonnikov, V. A. (1965). On boundary value problems for linear parabolic systems of differential equations of general form. Trudy Matematicheskogo Instituta imeni V. A. Steklova, 83, 3-163. · Zbl 0164.12502
[59] Soner, H. M., Touzi, N., & Zhang, J. (2011). Wellposedness of second order backward SDEs. Probability Theory and Related Fields, 153(1‐2), 149-190. · Zbl 1252.60056
[60] Strotz, R. H. (1955). Myopia and inconsistency in dynamic utility maximization. The Review of Economic Studies, 23(3), 165-180.
[61] Thaler, R. H. (1981). Some empirical evidence on dynamic inconsistency. Economics Letters, 8(3), 201-207.
[62] Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297-323. · Zbl 0775.90106
[63] Šopolov, N. N. (1970). The first boundary value problem for nonlinear parabolic equations of arbitrary order. Comptes Rendus de L’Academie Bulgare des Sciences, 23, 899-902. · Zbl 0208.13401
[64] Wang, H. (2020). Extended backward stochastic Volterra integral equations, quasilinear parabolic equations, and Feynman-Kac formula. Stochastics and Dynamics, 21(01), 2150004. · Zbl 1470.60143
[65] Wang, H., & Wu, Z. (2021). Time‐inconsistent linear‐quadratic non‐zero sum stochastic differential games with random jumps. International Journal of Control, 95, 1-11.
[66] Wang, H., & Yong, J. (2021). Time‐inconsistent stochastic optimal control problems and backward stochastic Volterra integral equations. ESAIM: Control, Optimisation and Calculus of Variations, 27, 22. · Zbl 1467.93339
[67] Wang, H., Yong, J., & Zhang, J. (2022). Path dependent Feynman-Kac formula for forward backward stochastic Volterra integral equations. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 58(2), 603-638. · Zbl 1494.35071
[68] Wang, T., & Yong, J. (2019). Backward stochastic Volterra integral equations—representation of adapted solutions. Stochastic Processes and their Applications, 129(12), 4926-4964. · Zbl 1427.60140
[69] Wei, Q., & Yu, Z. (2018). Time‐inconsistent recursive zero‐sum stochastic differential games. Mathematical Control & Related Fields, 8(3), 1051-1079. · Zbl 1418.49040
[70] Wei, Q., Yong, J., & Yu, Z. (2017). Time‐inconsistent recursive stochastic optimal control problems. SIAM Journal on Control and Optimization, 55(6), 4156-4201. · Zbl 1386.93314
[71] Yan, T., Han, B., Pun, C. S., & Wong, H. Y. (2020). Robust time‐consistent mean‐variance portfolio selection problem with multivariate stochastic volatility. Mathematics and Financial Economics, 14(4), 699-724. · Zbl 1461.91286
[72] Yan, W., & Yong, J. (2019). Time‐inconsistent optimal control problems and related issues. In G.Yin (ed.) & Q.Zhang (ed.) (Eds.), Modeling, stochastic control, optimization, and applications (Vol. 164, pp. 533-569). Springer International Publishing. · Zbl 1432.49039
[73] Yong, J. (2012). Time‐inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2(3), 271-329. · Zbl 1251.93144
[74] Yong, J., & Zhou, X. Y. (1999). Stochastic controls: Hamiltonian systems and HJB equations. Stochastic modelling and applied probability (Vol. 43, 1st ed.). Springer. · Zbl 0943.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.