×

Causality constraints on nonlinear supersymmetry. (English) Zbl 1536.83126

Summary: It is well-known that gravitino propagation in standard supergravities is free of any causality problems. However, two issues related to gravitino propagation were recently uncovered in specific supergravities with nonlinear supersymmetry. One of them concerns potential acausality/superluminality, whereas the second one arises from the vanishing of the sound speed at specific points during inflation. The former is famously related to positivity constraints on specific EFT operators, derived from dispersion relations on the energy-growing part of scattering amplitudes, and indeed we show that subluminality constraints for the gravitino are related via the equivalence theorem to positivity bounds in low-energy goldstino actions. However, the former are stronger, in the sense that they apply to functions of the scalar fields not only in the ground state, but for any field values such as those scanned by time-dependent solutions, unlike bounds derived from \(2\rightarrow2\) scattering amplitudes in the vacuum. We also argue that nontrivial causality constraints arise only in the case where nonlinear supersymmetry in the matter sector is encoded into superfield constraints which do not seem to arise from microscopic two-derivative lagrangians, in particular for the orthogonal constraint used to build minimal models of inflation in supergravity. This allows us to propose simple alternatives which maintain the minimality of the spectra and are causal in all points of the theory parameter space. We also discuss minimal supergravity models of inflation along these lines.

MSC:

83E30 String and superstring theories in gravitational theory
83E50 Supergravity
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81R40 Symmetry breaking in quantum theory

References:

[1] G. Velo and D. Zwanziger, Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential, Phys. Rev.186 (1969) 1337 [INSPIRE].
[2] D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress Toward a Theory of Supergravity, Phys. Rev. D13 (1976) 3214 [INSPIRE].
[3] S. Deser and B. Zumino, Consistent Supergravity, Phys. Lett. B62 (1976) 335 [INSPIRE].
[4] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012) [DOI]. · Zbl 1245.83001
[5] G. Dall’Agata and M. Zagermann, Supergravity: From First Principles to Modern Applications, Lecture Notes in Physics 991, Springer Berlin, Heidelberg, Germany (2021) [DOI] [INSPIRE]. · Zbl 1473.83001
[6] S. Deser and B. Zumino, Broken Supersymmetry and Supergravity, Phys. Rev. Lett.38 (1977) 1433 [INSPIRE].
[7] Deser, S.; Waldron, A., Inconsistencies of massive charged gravitating higher spins, Nucl. Phys. B, 631, 369 (2002) · Zbl 0995.83023 · doi:10.1016/S0550-3213(02)00199-2
[8] D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B46 (1973) 109 [INSPIRE].
[9] M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett.41 (1978) 451 [INSPIRE].
[10] U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D19 (1979) 2300 [INSPIRE].
[11] Komargodski, Z.; Seiberg, N., From Linear SUSY to Constrained Superfields, JHEP, 09, 066 (2009) · doi:10.1088/1126-6708/2009/09/066
[12] Dall’Agata, G.; Farakos, F., Constrained superfields in Supergravity, JHEP, 02, 101 (2016) · Zbl 1388.83783 · doi:10.1007/JHEP02(2016)101
[13] Dudas, E.; Ferrara, S.; Kehagias, A.; Sagnotti, A., Properties of Nilpotent Supergravity, JHEP, 09, 217 (2015) · Zbl 1388.83793 · doi:10.1007/JHEP09(2015)217
[14] E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter Supergravity, Phys. Rev. D92 (2015) 085040 [Erratum ibid.93 (2016) 069901] [arXiv:1507.08264] [INSPIRE].
[15] Bandos, I.; Martucci, L.; Sorokin, D.; Tonin, M., Brane induced supersymmetry breaking and de Sitter supergravity, JHEP, 02, 080 (2016) · Zbl 1388.83729 · doi:10.1007/JHEP02(2016)080
[16] Bandos, I.; Heller, M.; Kuzenko, SM; Martucci, L.; Sorokin, D., The Goldstino brane, the constrained superfields and matter in \(\mathcal{N} = 1\) supergravity, JHEP, 11, 109 (2016) · Zbl 1390.83370 · doi:10.1007/JHEP11(2016)109
[17] Antoniadis, I.; Dudas, E.; Ferrara, S.; Sagnotti, A., The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B, 733, 32 (2014) · Zbl 1370.83099 · doi:10.1016/j.physletb.2014.04.015
[18] Kallosh, R.; Linde, A., Inflation and Uplifting with Nilpotent Superfields, JCAP, 01, 025 (2015) · doi:10.1088/1475-7516/2015/01/025
[19] Ferrara, S.; Kallosh, R.; Thaler, J., Cosmology with orthogonal nilpotent superfields, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.043516
[20] Carrasco, JJM; Kallosh, R.; Linde, A., Minimal supergravity inflation, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.061301
[21] Hasegawa, F.; Mukaida, K.; Nakayama, K.; Terada, T.; Yamada, Y., Gravitino Problem in Minimal Supergravity Inflation, Phys. Lett. B, 767, 392 (2017) · doi:10.1016/j.physletb.2017.02.030
[22] Kolb, EW; Long, AJ; McDonough, E., Catastrophic production of slow gravitinos, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.075015
[23] Kolb, EW; Long, AJ; McDonough, E., Gravitino Swampland Conjecture, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.131603
[24] Dudas, E.; Garcia, MAG; Mambrini, Y.; Olive, KA; Peloso, M.; Verner, S., Slow and Safe Gravitinos, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.123519
[25] Terada, T., Minimal supergravity inflation without slow gravitino, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.125022
[26] Antoniadis, I.; Benakli, K.; Ke, W., Salvage of too slow gravitinos, JHEP, 11, 063 (2021) · Zbl 1521.83193 · doi:10.1007/JHEP11(2021)063
[27] Benakli, K.; Darmé, L.; Oz, Y., The Slow Gravitino, JHEP, 10, 121 (2014) · doi:10.1007/JHEP10(2014)121
[28] P. Fayet, Lower Limit on the Mass of a Light Gravitino from e^+e^−Annihilation Experiments, Phys. Lett. B175 (1986) 471 [INSPIRE].
[29] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, A gravitino-goldstino high-energy equivalence theorem, Phys. Lett. B215 (1988) 313 [INSPIRE].
[30] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, High-Energy Equivalence Theorem in Spontaneously Broken Supergravity, Phys. Rev. D39 (1989) 2281 [INSPIRE].
[31] Adams, A.; Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Rattazzi, R., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014 (2006) · doi:10.1088/1126-6708/2006/10/014
[32] Bellazzini, B., Softness and amplitudes’ positivity for spinning particles, JHEP, 02, 034 (2017) · Zbl 1377.81219 · doi:10.1007/JHEP02(2017)034
[33] B. Bellazzini, L. Martucci and R. Torre, Symmetries, Sum Rules and Constraints on Effective Field Theories, JHEP09 (2014) 100 [arXiv:1405.2960] [INSPIRE]. · Zbl 1333.81182
[34] Zhang, C.; Zhou, S-Y, Positivity bounds on vector boson scattering at the LHC, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.095003
[35] Bi, Q.; Zhang, C.; Zhou, S-Y, Positivity constraints on aQGC: carving out the physical parameter space, JHEP, 06, 137 (2019) · doi:10.1007/JHEP06(2019)137
[36] Remmen, GN; Rodd, NL, Consistency of the Standard Model Effective Field Theory, JHEP, 12, 032 (2019) · doi:10.1007/JHEP12(2019)032
[37] G.N. Remmen and N.L. Rodd, Flavor Constraints from Unitarity and Analyticity, Phys. Rev. Lett.125 (2020) 081601 [Erratum ibid.127 (2021) 149901] [arXiv:2004.02885] [INSPIRE].
[38] Zhang, C.; Zhou, S-Y, Convex Geometry Perspective on the (Standard Model) Effective Field Theory Space, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.201601
[39] Fuks, B.; Liu, Y.; Zhang, C.; Zhou, S-Y, Positivity in electron-positron scattering: testing the axiomatic quantum field theory principles and probing the existence of UV states, Chin. Phys. C, 45 (2021) · doi:10.1088/1674-1137/abcd8c
[40] Yamashita, K.; Zhang, C.; Zhou, S-Y, Elastic positivity vs extremal positivity bounds in SMEFT: a case study in transversal electroweak gauge-boson scatterings, JHEP, 01, 095 (2021) · doi:10.1007/JHEP01(2021)095
[41] Bonnefoy, Q.; Gendy, E.; Grojean, C., Positivity bounds on Minimal Flavor Violation, JHEP, 04, 115 (2021) · doi:10.1007/JHEP04(2021)115
[42] Li, X.; Xu, H.; Yang, C.; Zhang, C.; Zhou, S-Y, Positivity in Multifield Effective Field Theories, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.121601
[43] C. Zhang, SMEFTs living on the edge: determining the UV theories from positivity and extremality, arXiv:2112.11665 [INSPIRE].
[44] Trott, T., Causality, unitarity and symmetry in effective field theory, JHEP, 07, 143 (2021) · doi:10.1007/JHEP07(2021)143
[45] Caron-Huot, S.; Van Duong, V., Extremal Effective Field Theories, JHEP, 05, 280 (2021) · doi:10.1007/JHEP05(2021)280
[46] Arkani-Hamed, N.; Huang, T-C; Huang, Y-T, The EFT-Hedron, JHEP, 05, 259 (2021) · Zbl 1466.81132 · doi:10.1007/JHEP05(2021)259
[47] L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, Into the EFThedron and UV constraints from IR consistency, JHEP03 (2022) 063 [arXiv:2105.02862] [INSPIRE].
[48] L.-Y. Chiang, Y.-t. Huang, L. Rodina and H.-C. Weng, De-projecting the EFThedron, arXiv:2204.07140 [INSPIRE].
[49] Alberte, L.; de Rham, C.; Jaitly, S.; Tolley, AJ, Positivity Bounds and the Massless Spin-2 Pole, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.125023
[50] Tokuda, J.; Aoki, K.; Hirano, S., Gravitational positivity bounds, JHEP, 11, 054 (2020) · Zbl 1456.83031 · doi:10.1007/JHEP11(2020)054
[51] Alberte, L.; de Rham, C.; Jaitly, S.; Tolley, AJ, QED positivity bounds, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.125020
[52] Caron-Huot, S.; Mazac, D.; Rastelli, L.; Simmons-Duffin, D., Sharp boundaries for the swampland, JHEP, 07, 110 (2021) · Zbl 1468.83031 · doi:10.1007/JHEP07(2021)110
[53] N. Arkani-Hamed, Y.-t. Huang, J.-Y. Liu and G.N. Remmen, Causality, unitarity, and the weak gravity conjecture, JHEP03 (2022) 083 [arXiv:2109.13937] [INSPIRE]. · Zbl 1522.83116
[54] Bellazzini, B.; Cheung, C.; Remmen, GN, Quantum Gravity Constraints from Unitarity and Analyticity, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.064076
[55] Bellazzini, B.; Riva, F.; Serra, J.; Sgarlata, F., Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.161101
[56] Bellazzini, B.; Lewandowski, M.; Serra, J., Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.251103
[57] Alberte, L.; de Rham, C.; Momeni, A.; Rumbutis, J.; Tolley, AJ, Positivity Constraints on Interacting Spin-2 Fields, JHEP, 03, 097 (2020) · Zbl 1435.81113 · doi:10.1007/JHEP03(2020)097
[58] Alberte, L.; de Rham, C.; Momeni, A.; Rumbutis, J.; Tolley, AJ, Positivity Constraints on Interacting Pseudo-Linear Spin-2 Fields, JHEP, 07, 121 (2020) · Zbl 1451.81321 · doi:10.1007/JHEP07(2020)121
[59] Wang, Z-Y; Zhang, C.; Zhou, S-Y, Generalized elastic positivity bounds on interacting massive spin-2 theories, JHEP, 04, 217 (2021) · doi:10.1007/JHEP04(2021)217
[60] Herrero-Valea, M.; Santos-Garcia, R.; Tokareva, A., Massless positivity in graviton exchange, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.085022
[61] Aoki, K.; Loc, TQ; Noumi, T.; Tokuda, J., Is the Standard Model in the Swampland? Consistency Requirements from Gravitational Scattering, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.091602
[62] Alberte, L.; de Rham, C.; Jaitly, S.; Tolley, AJ, Reverse Bootstrapping: IR Lessons for UV Physics, Phys. Rev. Lett., 128 (2022) · doi:10.1103/PhysRevLett.128.051602
[63] S. Caron-Huot, Y.-Z. Li, J. Parra-Martinez and D. Simmons-Duffin, Graviton partial waves and causality in higher dimensions, arXiv:2205.01495 [INSPIRE].
[64] Bellazzini, B.; Elias Miró, J.; Rattazzi, R.; Riembau, M.; Riva, F., Positive moments for scattering amplitudes, Phys. Rev. D, 104, 036006 (2021) · doi:10.1103/PhysRevD.104.036006
[65] Chala, M.; Santiago, J., Positivity bounds in the standard model effective field theory beyond tree level, Phys. Rev. D, 105, L111901 (2022) · doi:10.1103/PhysRevD.105.L111901
[66] Wang, Y-J; Guo, F-K; Zhang, C.; Zhou, S-Y, Generalized positivity bounds on chiral perturbation theory, JHEP, 07, 214 (2020) · doi:10.1007/JHEP07(2020)214
[67] Gu, J.; Wang, L-T; Zhang, C., Unambiguously Testing Positivity at Lepton Colliders, Phys. Rev. Lett., 129 (2022) · doi:10.1103/PhysRevLett.129.011805
[68] Alvarez, B.; Bijnens, J.; Sjö, M., NNLO positivity bounds on chiral perturbation theory for a general number of flavours, JHEP, 03, 159 (2022) · doi:10.1007/JHEP03(2022)159
[69] Li, X.; Mimasu, K.; Yamashita, K.; Yang, C.; Zhang, C.; Zhou, S-Y, Moments for positivity: using Drell-Yan data to test positivity bounds and reverse-engineer new physics, JHEP, 10, 107 (2022) · doi:10.1007/JHEP10(2022)107
[70] de Rham, C.; Melville, S.; Tolley, AJ; Zhou, S-Y, Positivity bounds for scalar field theories, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.081702
[71] de Rham, C.; Melville, S.; Tolley, AJ; Zhou, S-Y, UV complete me: Positivity Bounds for Particles with Spin, JHEP, 03, 011 (2018) · Zbl 1388.81262 · doi:10.1007/JHEP03(2018)011
[72] Davighi, J.; Melville, S.; You, T., Natural selection rules: new positivity bounds for massive spinning particles, JHEP, 02, 167 (2022) · Zbl 1522.81205 · doi:10.1007/JHEP02(2022)167
[73] Tolley, AJ; Wang, Z-Y; Zhou, S-Y, New positivity bounds from full crossing symmetry, JHEP, 05, 255 (2021) · doi:10.1007/JHEP05(2021)255
[74] Du, Z-Z; Zhang, C.; Zhou, S-Y, Triple crossing positivity bounds for multi-field theories, JHEP, 12, 115 (2021) · Zbl 1521.81158 · doi:10.1007/JHEP12(2021)115
[75] Chowdhury, SD; Ghosh, K.; Haldar, P.; Raman, P.; Sinha, A., Crossing Symmetric Spinning S-matrix Bootstrap: EFT bounds, SciPost Phys., 13, 051 (2022) · doi:10.21468/SciPostPhys.13.3.051
[76] Dall’Agata, G.; Dudas, E.; Farakos, F., On the origin of constrained superfields, JHEP, 05, 041 (2016) · doi:10.1007/JHEP05(2016)041
[77] C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE]. · Zbl 1117.81117
[78] Palti, E., The Swampland: Introduction and Review, Fortsch. Phys., 67, 1900037 (2019) · Zbl 1527.83096 · doi:10.1002/prop.201900037
[79] Kahn, Y.; Roberts, DA; Thaler, J., The goldstone and goldstino of supersymmetric inflation, JHEP, 10, 001 (2015) · Zbl 1388.83925 · doi:10.1007/JHEP10(2015)001
[80] J. Wess and J. Bagger, Supersymmetry and supergravity, University Press, Princeton, U.S.A. (1992). · Zbl 0516.53060
[81] B. Zumino, Supersymmetry and Kähler Manifolds, Phys. Lett. B87 (1979) 203 [INSPIRE].
[82] Kallosh, R.; Wrase, T., de Sitter Supergravity Model Building, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.105010
[83] Ferrara, S.; Kallosh, R.; Linde, A., Cosmology with Nilpotent Superfields, JHEP, 10, 143 (2014) · Zbl 1333.83268 · doi:10.1007/JHEP10(2014)143
[84] A. Bilal, Introduction to supersymmetry, hep-th/0101055 [INSPIRE]. · Zbl 0629.53077
[85] H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE]. · Zbl 1332.81010
[86] Dine, M.; Festuccia, G.; Komargodski, Z., A Bound on the Superpotential, JHEP, 03, 011 (2010) · Zbl 1271.81159 · doi:10.1007/JHEP03(2010)011
[87] Dudas, E.; von Gersdorff, G.; Ghilencea, DM; Lavignac, S.; Parmentier, J., On non-universal Goldstino couplings to matter, Nucl. Phys. B, 855, 570 (2012) · Zbl 1229.81328 · doi:10.1016/j.nuclphysb.2011.10.011
[88] Kuzenko, SM, Nilpotent \(\mathcal{N} = 1\) tensor multiplet, JHEP, 04, 131 (2018) · Zbl 1390.83408 · doi:10.1007/JHEP04(2018)131
[89] Aldabergenov, Y.; Chatrabhuti, A.; Isono, H., Nilpotent superfields for broken abelian symmetries, Eur. Phys. J. C, 81, 523 (2021) · doi:10.1140/epjc/s10052-021-09320-4
[90] E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B212 (1983) 413 [INSPIRE].
[91] Dall’Agata, G.; Zwirner, F., On sgoldstino-less supergravity models of inflation, JHEP, 12, 172 (2014) · Zbl 1333.83227 · doi:10.1007/JHEP12(2014)172
[92] S. Sugimoto, Anomaly cancellations in type-\(I D9-D\overline{9}\) system and the USp(32) string theory, Prog. Theor. Phys.102 (1999) 685 [hep-th/9905159] [INSPIRE].
[93] Antoniadis, I.; Dudas, E.; Sagnotti, A., Brane supersymmetry breaking, Phys. Lett. B, 464, 38 (1999) · Zbl 0987.81551 · doi:10.1016/S0370-2693(99)01023-0
[94] Angelantonj, C., Comments on open string orbifolds with a nonvanishing B_ab, Nucl. Phys. B, 566, 126 (2000) · Zbl 0956.81075 · doi:10.1016/S0550-3213(99)00662-8
[95] Aldazabal, G.; Uranga, AM, Tachyon free nonsupersymmetric type IIB orientifolds via brane-antibrane systems, JHEP, 10, 024 (1999) · Zbl 0957.81040 · doi:10.1088/1126-6708/1999/10/024
[96] Angelantonj, C.; Antoniadis, I.; D’Appollonio, G.; Dudas, E.; Sagnotti, A., Type I vacua with brane supersymmetry breaking, Nucl. Phys. B, 572, 36 (2000) · Zbl 0947.81124 · doi:10.1016/S0550-3213(00)00052-3
[97] J. Mourad and A. Sagnotti, An Update on Brane Supersymmetry Breaking, arXiv:1711.11494 [INSPIRE].
[98] Dudas, E.; Mourad, J., Consistent gravitino couplings in nonsupersymmetric strings, Phys. Lett. B, 514, 173 (2001) · Zbl 0969.81619 · doi:10.1016/S0370-2693(01)00777-8
[99] Pradisi, G.; Riccioni, F., Geometric couplings and brane supersymmetry breaking, Nucl. Phys. B, 615, 33 (2001) · Zbl 0988.81089 · doi:10.1016/S0550-3213(01)00441-2
[100] Basile, I.; Mourad, J.; Sagnotti, A., On Classical Stability with Broken Supersymmetry, JHEP, 01, 174 (2019) · Zbl 1409.83201 · doi:10.1007/JHEP01(2019)174
[101] Basile, I.; Lanza, S., de Sitter in non-supersymmetric string theories: no-go theorems and brane-worlds, JHEP, 10, 108 (2020) · Zbl 1456.83088 · doi:10.1007/JHEP10(2020)108
[102] Sagnotti, A.; Mourad, J., String (In)Stability Issues with Broken Supersymmetry, LHEP, 2021, 219 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.