×

Separating fluid and solid contact constraints for hydro-mechanically coupled finite elements discretising fluid displacement. (English) Zbl 1536.76077

Summary: In the simulation of multi-phase porous media in contact with a structure, the contact constraints to be enforced depend on the spatially discretised variables and additional physical considerations. Typically, fluids in porous media behave differently at the contact interface than the solid phase through which they flow. Aspects of numerical modelling and considerations in defining constraints to model such phenomena are discussed in this work. To this end, a hydro-mechanically coupled finite element formulation discretising fluid displacement is supplemented by a mortar contact discretisation scheme enforcing the contact constraints separately for the different phases. Using the proposed multi-phase mortar contact formulation, it is demonstrated for which type of problems such a formulation offers advantages over formulations not distinguishing contact constraints of multiple phases.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Donzelli, P. S.; Spilker, R. L., A contact finite element formulation for biological soft hydrated tissues. Comput. Methods Appl. Mech. Engrg., 1, 63-79 (1998) · Zbl 0957.74046
[2] Ateshian, G. A.; Maas, S.; Weiss, J. A., Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding. J. Biomech. Eng., 6, 61006 (2010)
[3] Zimmerman, B.; Maas, S. A.; Weiss, J. A.; Ateshian, G. A., A finite element algorithm for large deformation biphasic frictional contact between porous-permeable hydrated soft tissues. J. Biomech. Eng., 2, 21008 (2021)
[4] Mancusi, E.; Fontana, É.; Ulson de Souza, A. A.; Guelli Ulson de Souza, S. M.A., Numerical study of two-phase flow patterns in the gas channel of PEM fuel cells with tapered flow field design. Int. J. Hydrogen Energy, 5, 2261-2273 (2014)
[5] Khan, M. A.; Sundeń, B.; Yuan, J., Analysis of multi-phase transport phenomena with catalyst reactions in polymer electrolyte membrane fuel cells - A review. J. Power Sources, 19, 7899-7916 (2011)
[6] Vuong, A.-T.; Yoshihara, L.; Wall, W. A., A general approach for modeling interacting flow through porous media under finite deformations. Comput. Methods Appl. Mech. Engrg., 1240-1259 (2015) · Zbl 1423.76447
[7] Zienkiewicz, O. C.; Shiomi, T., Dynamic behaviour of saturated porous media: The generalized Biot formulation and its numerical solution. Int. J. Numer. Anal. Methods Geomech., 1, 71-96 (1984) · Zbl 0526.73099
[8] Zienkiewicz, O.; Chan, H.; Pastor, M.; Schrefler, B.; Shiomi, T., Computational Geomechanics with Special Reference to Earthquake Engineering, Vol. 613 (1999), Wiley · Zbl 0932.74003
[9] Ravichandran, N.; Muraleetharan, K. K., Dynamics of unsaturated soils using various finite element formulations. Int. J. Numer. Anal. Methods Geomech., 5, 611-631 (2009) · Zbl 1273.74301
[10] Li, C.; Borja, R. I.; Regueiro, R. A., Dynamics of porous media at finite strain. Comput. Methods Appl. Mech. Engrg., 36, 3837-3870 (2004) · Zbl 1068.74019
[11] Jeremic, B.; Cheng, Z.; Taiebat, M.; Dafalias, Y., Numerical simulation of fully saturated porous materials. Int. J. Numer. Anal. Methods Geomech., 1635-1660 (2008) · Zbl 1273.74079
[12] Shi, L.; Sun, H.; Cai, Y.; Xu, C.; Wang, P., Validity of fully drained, fully undrained and u-p formulations for modeling a poroelastic half-space under a moving harmonic point load. Soil Dyn. Earthq. Eng., 292-301 (2012)
[13] Cuéllar, P.; Mira, P.; Pastor, M.; Fernández Merodo, J. A.; Baeßler, M.; Rücker, W., A numerical model for the transient analysis of offshore foundations under cyclic loading. Comput. Geotech., 75-86 (2014)
[14] Corciulo, S.; Zanoli, O.; Pisanò, F., Transient response of offshore wind turbines on monopiles in sand: role of cyclic hydro-mechanical soil behaviour. Comput. Geotech., 221-238 (2017)
[15] Monforte, L.; Navas, P.; Carbonell, J. M.; Arroyo, M.; Gens, A., Low-order stabilized finite element for the full Biot formulation in soil mechanics at finite strain. Int. J. Numer. Anal. Methods Geomech., 7, 1488-1515 (2019)
[16] Argani, L. P.; Gajo, A., A novel insight into vertical ground motion modelling in earthquake engineering. Int. J. Numer. Anal. Methods Geomech. (2021)
[17] Watanabe, N.; Wang, W.; Taron, J.; Görke, U. J.; Kolditz, O., Lower-dimensional interface elements with local enrichment: application to coupled hydro-mechanical problems in discretely fractured porous media. International Journal for Numerical Methods in Engineering, 8, 1010-1034 (2012) · Zbl 1242.74172
[18] Cerfontaine, B.; Dieudonné, A. C.; Radu, J. P.; Collin, F.; Charlier, R., 3D zero-thickness coupled interface finite element: Formulation and application. Computers and Geotechnics, 124-140 (2015)
[19] El-Abbasi, N.; Bathe, K. J., Stability and patch test performance of contact discretizations and a new solution algorithm. Comput. Struct., 16, 1473-1486 (2001)
[20] Wohlmuth, B. I.
[21] Wriggers, P., 1-518
[22] Sabetamal, H.; Nazem, M.; Sloan, S. W.; Carter, J. P., Frictionless contact formulation for dynamic analysis of nonlinear saturated porous media based on the mortar method. Int. J. Numer. Anal. Methods Geomech., 1, 25-61 (2016)
[23] Sabetamal, H.; Carter, J.; Nazem, M.; Sloan, S., Coupled analysis of dynamically penetrating anchors. Comput. Geotech., 26-44 (2016)
[24] Ghorbani, J.; Nazem, M.; Kodikara, J.; Wriggers, P., Finite element solution for static and dynamic interactions of cylindrical rigid objects and unsaturated granular soils. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.74083
[25] Schrefler, B. A.; Simoni, L.; Xikui, L.; Zienkiewicz, O. C., Mechanics of Partially Saturated Porous Media (1990), Springer Vienna
[26] Borja, R. I., On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct., 6, 1764-1786 (2006) · Zbl 1120.74446
[27] Ehlers, W.; Blome, P., On porous soil materials saturated with a compressible pore-fluid mixture. ZAMM - J. Appl. Math. Mech./Z. Angew. Math. Mech., S1, 141-144 (2000) · Zbl 0986.74050
[28] Ehlers, W.; Graf, T.; Diebels, S., On the description of partially saturated soils by the theory of porous media. PAMM, 1, 230-231 (2003) · Zbl 1201.76256
[29] Graf, T.; Ehlers, W., On the theoretical and numerical modelling of unsaturated soil. PAMM, 1, 278-279 (2003) · Zbl 1354.76183
[30] Ehlers, W.; Bluhm, J., Porous Media: Theory, Experiments and Numerical Applications (2013), Springer Berlin Heidelberg
[31] Schrefler, B. A.; Scotta, R., A fully coupled dynamic model for two-phase fluid flow in deformable porous media. Comput. Methods Appl. Mech. Engrg., 24-25, 3223-3246 (2001) · Zbl 0977.74019
[32] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method (2000), Butterworth · Zbl 0991.74002
[33] Ehlers, W., Darcy, Forchheimer, Brinkman and Richards: classical hydromechanical equations and their significance in the light of the TPM. Arch. Appl. Mech. (2020)
[34] Ehlers, W.; Luo, C., A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing. Comput. Methods Appl. Mech. Engrg., 348-368 (2017) · Zbl 1439.74107
[35] Sonntag, A.; Wagner, A.; Ehlers, W., Dynamic hydraulic fracturing in partially saturated porous media. Comput. Methods Appl. Mech. Engrg. (2023) · Zbl 1539.74114
[36] Hilber, H. M.; Hughes, T. J.; Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn., 3, 283-292 (1977)
[37] Staubach, P.; Machaček, J., Influence of relative acceleration in saturated sand: Analytical approach and simulation of vibratory pile driving tests. Comput. Geotech., 173-184 (2019)
[38] Puso, M. A.; Laursen, T. A., A mortar segment-to-segment frictional contact method for large deformations. Comput. Methods Appl. Mech. Engrg., 45-47, 4891-4913 (2004) · Zbl 1112.74535
[39] Yang, B.; Laursen, T. A.; Meng, X., Two dimensional mortar contact methods for large deformation frictional sliding. Internat. J. Numer. Methods Engrg., 9, 1183-1225 (2005) · Zbl 1161.74497
[40] Puso, M. A.; Laursen, T.; Solberg, J., A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput. Methods Appl. Mech. Engrg., 6-8, 555-566 (2008) · Zbl 1169.74627
[41] Popp, A.; Gee, M. W.; Wall, W. A., A finite deformation mortar contact formulation using a primal-dual active set strategy. Internat. J. Numer. Methods Engrg., 11, 1354-1391 (2009) · Zbl 1176.74133
[42] Fischer, K.; Wriggers, P., Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput. Mech., 3, 226-244 (2005) · Zbl 1102.74033
[43] Fischer, K. A.; Wriggers, P., Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput. Methods Appl. Mech. Engrg., 37-40, 5020-5036 (2006) · Zbl 1118.74047
[44] Tur, M.; Fuenmayor, F. J.; Wriggers, P., A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput. Methods Appl. Mech. Engrg., 37, 2860-2873 (2009) · Zbl 1229.74141
[45] Farah, P.; Popp, A.; Wall, W. A., Segment-based vs. Element-based integration for mortar methods in computational contact mechanics. Comput. Mech., 1, 209-228 (2015) · Zbl 1311.74120
[46] Machaček, J., Contributions to the Numerical Modelling of Saturated and Unsaturated Soils (2020), Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, Issue No. 187
[47] Machaček, J.; Staubach, P.; Tafili, M.; Zachert, H.; Wichtmann, T., Investigation of three sophisticated constitutive soil models: From numerical formulations to element tests and the analysis of vibratory pile driving tests. Comput. Geotech. (2021)
[48] Staubach, P.; Kimmig, I.; Machaček, J.; Wichtmann, T.; Triantafyllidis, T., Deep vibratory compaction simulated using a high-cycle accumulation model. Soil Dyn. Earthq. Eng. (2023)
[49] Staubach, P., Contributions to the Numerical Modelling of Pile Installation Processes and High-Cyclic Loading of Soils (2022), Publications of the Chair of Soil Mechanics, Foundation Engineering Environmental Geotechnics, Ruhr-University Bochum, Issue No. 73
[50] Staubach, P.; Machaček, J.; Wichtmann, T., Mortar contact discretisation methods incorporating interface models based on hypoplasticity and sanisand: Application to vibratory pile driving. Comput. Geotech. (2022)
[51] Weissenfels, C.; Wriggers, P., Methods to project plasticity models onto the contact surface applied to soil structure interactions. Comput. Geotech., 187-198 (2015)
[52] Saberi, M.; Annan, C. D.; Konrad, J. M., Three-dimensional constitutive model for cyclic behavior of soil-structure interfaces. Soil Dyn. Earthq. Eng. (2020)
[53] Staubach, P.; Machaček, J.; Wichtmann, T., Novel approach to apply existing constitutive soil models to the modelling of interfaces. Int. J. Numer. Anal. Methods Geomech., 7, 1241-1271 (2022)
[54] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. & Fluids, 1, 73-100 (1973) · Zbl 0328.76020
[55] Massarsch, K. R.; Wersall̈, C.; Fellenius, B. H., Vibratory driving of piles and sheet piles - state of practice. Proc. Inst. Civ. Eng. Geotech. Eng., 1, 31-48 (2022)
[56] Cudmani, R. O., Statische, Alternierende und Dynamische Penetration in Nichtbindige Böden (2001), Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, Issue No. 152
[57] Osinov, V. A.; Chrisopoulos, S.; Triantafyllidis, T., Numerical study of the deformation of saturated soil in the vicinity of a vibrating pile. Acta Geotech., 4, 439-446 (2013)
[58] Machaček, J.; Triantafyllidis, T.; Staubach, P., Fully coupled simulation of an opencast mine subjected to earthquake loading. Soil Dyn. Earthq. Eng., 853-867 (2018)
[59] Vogelsang, J., Untersuchungen zu den Mechanismen der Pfahlrammung (2016), Veröffentlichung des Instituts für Bodenmechanik und Felsmechanik am Karlsruher Institut für Technologie (KIT), Heft 182, (Ph.D. thesis)
[60] Staubach, P.; Machaček, J.; Skowronek, J.; Wichtmann, T., Vibratory pile driving in water-saturated sand: Back-analysis of model tests using a hydro-mechanically coupled CEL method. Soils Found., 1, 144-159 (2021)
[61] von Wolffersdorff, P.-A., A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohes. Frict. Mater., 251-271 (1996)
[62] Niemunis, A.; Herle, I., Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohes. Frict. Mater., 4, 279-299 (1997)
[63] Fuentes, W.; Triantafyllidis, T., ISA model: A constitutive model for soils with yield surface in the intergranular strain space. Int. J. Numer. Anal. Methods Geomech., 11, 1235-1254 (2015)
[64] Poblete, M.; Fuentes, W.; Triantafyllidis, T., On the simulation of multidimensional cyclic loading with intergranular strain. Acta Geotech., 6, 1263-1285 (2016)
[65] Kozeny Josef, M., Über Kapillare Leitung des Wassers im Boden, Vol. 136. 2a, 271-306 (1927), Hölder-Pichler-Tempsky, A.-G.[Abt.]: Akad. d. Wiss.
[66] Carman, P., Permeability of saturated sands, soils and clays. J. Agric. Sci., 2, 262-273 (1939)
[67] Vogelsang, J.; Huber, G.; Triantafyllidis, T., Experimental investigation of vibratory pile driving in saturated sand, 101-123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.