×

Volumetric embedded entities for the isogeometric analysis of complex structures. (English) Zbl 1536.76065

Summary: We propose a convenient methodology for the modeling and analysis of aircraft compressor blades. To meet this goal, IsoGeometric Analysis is put to good use, as it allows for an exact representation of the geometry, especially for the analysis. This work aims at developing numerical tools to handle mechanical analysis, and later on shape optimisation, of 3D aircraft engine compressor blades using IGA. More precisely, our final goal is to carry out shape optimisation of one precise patch belonging to a complex multipatch structure, while having other patches to follow automatically the geometric changes. To meet this goal, work on geometric and modeling aspects are needed, which is the objective of this paper. Using the proposed techniques to perform gradient-based shape optimisation constitutes a work in itself and is therefore not presented here, but will be detailed in a follow-up paper.
In our case, the complete blade assembly is represented using several volumetric patches: the airfoil, the platform, the tenon and the fillet. In order to ensure the geometric compatibility between the different patches, we propose an embedded solid element formulation. A mortar method is implemented in order to guarantee the coupling between the various parts of the assembly. The results show a great potential for the proposed approach for blades design, while concurrently offering broad perspectives in terms of applications.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76G25 General aerodynamics and subsonic flows
74S22 Isogeometric methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics

Software:

Python; Rhinoceros; SciPy
Full Text: DOI

References:

[1] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis (2009), John Wiley & Sons, Ltd: John Wiley & Sons, Ltd Chichester, UK · Zbl 1378.65009
[2] Hirschler, T.; Bouclier, R.; Duval, A.; Elguedj, T.; Morlier, J., The embedded isogeometric Kirchhoff-Love shell: From design to shape optimization of non-conforming stiffened multipatch structures. Comput. Methods Appl. Mech. Engrg., 774-797 (2019) · Zbl 1441.74245
[3] Wang, Y.; Wang, Z.; Xia, Z.; Hien Poh, L., Structural design optimization using isogeometric analysis: A comprehensive review. Comput. Model. Eng. Sci., 455-507 (2018)
[4] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization. Comput. Methods Appl. Mech. Engrg., 2976-2988 (2008) · Zbl 1194.74263
[5] Qian, X., Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput. Methods Appl. Mech. Engrg., 2059-2071 (2010) · Zbl 1231.74352
[6] Nagy, A. P.; IJsselmuiden, S. T.; Abdalla, M. M., Isogeometric design of anisotropic shells: Optimal form and material distribution. Comput. Methods Appl. Mech. Engrg., 145-162 (2013) · Zbl 1286.74074
[7] Kiendl, J.; Schmidt, R.; Wuc̈hner, R.; Bletzinger, K.-U., Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Comput. Methods Appl. Mech. Engrg., 148-167 (2014) · Zbl 1296.74082
[8] Fußeder, D.; Simeon, B.; Vuong, A.-V., Fundamental aspects of shape optimization in the context of isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 313-331 (2015) · Zbl 1425.65159
[9] Hirschler, T.; Bouclier, R.; Duval, A.; Elguedj, T.; Morlier, J., A new lighting on analytical discrete sensitivities in the context of IsoGeometric shape optimization. Arch. Comput. Methods Eng., 2371-2408 (2020)
[10] Guerder, M.; Duval, A.; Elguedj, T.; Feliot, P.; Touzeau, J., Isogeometric shape optimisation of volumetric blades for aircraft engines. Struct. Multidiscip. Optim., 1-21 (2022)
[11] Guerder, M., IsoGeometric Analysis and Shape Optimisation of Aircraft Compressor Blades (2022), Université de Lyon, (Ph.D. thesis)
[12] Duval, A.; Guerder, M.; Hirschler, T.; Cornejo-Fuentes, J.; Elguedj, T., YETI: Yet another iga code (2023), https://lamcosplm.insa-lyon.fr/projects/yeti
[13] Großmann, D.; Juẗtler, B., Volumetric geometry reconstruction of turbine blades for aircraft engines, 280-295
[14] Mykhaskiv, O.; Banović, M.; Auriemma, S.; Mohanamuraly, P.; Walther, A.; Legrand, H.; Mul̈ler, J.-D., NURBS-based and parametric-based shape optimization with differentiated CAD kernel, vol. 15, 916-926 (2018)
[15] Stein, P.; Hsu, M.-C.; Bazilevs, Y.; Beucke, K. E., Operator- and template-based modeling of solid geometry for isogeometric analysis with application to vertical axis wind turbine simulation. Comput. Methods Appl. Mech. Eng., 71-83 (2012)
[16] Herrema, A. J.; Wiese, N. M.; Darling, C. N.; Ganapathysubramanian, C.; Krishnamurthy, A.; Hsu, M.-C., A framework for parametric design optimization using isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 944-965 (2017) · Zbl 1439.74258
[17] Peŕez-Arribas, F.; Pérez-Fernández, R., A B-spline design model for propeller blades. Adv. Eng. Softw., 35-44 (2018)
[18] Arapakopoulos, A.; Polichshuk, R.; Segizbayev, Z.; Ospanov, S.; Ginnis, A. I.; Kostas, K. V., Parametric models for marine propellers. Ocean Eng. J. (2019)
[19] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg., 4135-4195 (2005), arXiv:1608.04366 · Zbl 1151.74419
[20] Piegl, L.; Tiller, W., The NURBS Book (1996), Springer Science & Business Media
[21] Cox, M. G., The numerical evaluation of B-splines. IMA J. Appl. Math., 134-149 (1972) · Zbl 0252.65007
[22] De Boor, C., On calculating with B-splines. J. Approx. Theory, 50-62 (1972) · Zbl 0239.41006
[23] Sederberg, T. W.; Parry, S. R., Free-form deformation of solid geometric models, 151-160
[24] Coquillart, S., Extended free-form deformation: A sculpturing tool for 3d geometric modeling, 187-196
[25] R. Duvigneau, Adaptive Parameterization using Free-Form Deformation for Aerodynamic Shape Optimization, Technical Report, 2006,.
[26] Manzoni, A.; Quarteroni, A.; Rozza, G., Shape optimization for viscous flows by reduced basis methods and free-form deformation. Internat. J. Numer. Methods Fluids, 646-670 (2012) · Zbl 1412.76031
[27] Koshakji, A.; Quarteroni, A.; Rozza, G., Free form deformation techniques applied to 3D shape optimization problems. Commun. Appl. Ind. Math., 1-26 (2013) · Zbl 1329.49091
[28] Bauer, A. M.; Breitenberger, M.; Philipp, B.; Wuc̈hner, R.; Bletzinger, K.-U., Embedded structural entities in NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 198-218 (2017) · Zbl 1439.74388
[29] Elber, G., Precise construction of micro-structures and porous geometry via functional composition, 108-125 · Zbl 1422.65040
[30] Elber, G., A review of a B-spline based volumetric representation: Design, analysis and fabrication of porous and/or heterogeneous geometries. Comput. Aided Des. (2023)
[31] Antolin, P.; Buffa, A.; Cohen, E.; Dannenhoffer, J.; Elber, G.; Elgeti, S.; Haimes, R.; Riesenfeld, R., Optimizing micro-tiles in micro-structures as a design paradigm. Comput. Aided Des., 23-33 (2019)
[32] Hirschler, T.; Antolin, P.; Buffa, A., Fast and multiscale formation of isogeometric matrices of microstructured geometric models. Comput. Mech., 1-28 (2022) · Zbl 07492679
[33] Rank, E.; Ruess, M.; Kollmannsberger, S.; Schillinger, D.; Dus̈ter, A., Geometric modeling, isogeometric analysis and the finite cell method. Comput. Methods Appl. Mech. Engrg., 104-115 (2012) · Zbl 1348.74340
[34] De Prenter, F.; Verhoosel, C. V.; Van Brummelen, E. H., Preconditioning immersed isogeometric finite element methods with application to flow problems. Comput. Methods Appl. Mech. Engrg., 604-631 (2019) · Zbl 1440.65197
[35] Hirschler, T.; Bouclier, R.; Dureisseix, D.; Duval, A.; Elguedj, T.; Morlier, J., A dual domain decomposition algorithm for the analysis of non-conforming isogeometric Kirchhoff-Love shells. Comput. Methods Appl. Mech. Engrg. (2019) · Zbl 1442.65018
[36] Lipton, S.; Evans, J. A.; Bazilevs, Y.; Elguedj, T.; Hughes, T. J.R., Robustness of isogeometric structural discretizations under severe mesh distortion. Comput. Methods Appl. Mech. Engrg., 357-373 (2010) · Zbl 1227.74112
[37] Irons, B. M.; Razzaque, A., Experience with the patch test for convergence of finite elements, 557-587 · Zbl 0279.65087
[38] F. M.; Lloberas-Valls, O.; Cante, J.; Oliver, J., The domain interface method: A general-purpose non-intrusive technique for non-conforming domain decomposition problems. Comput. Mech., 555-581 (2016) · Zbl 1382.65435
[39] Beirao da Vega, L.; Cho, D.; Pavarino, L.; Scacchi, S., Overlapping Schwarz methods for isogeometric analysis. SIAM J. Numer. Anal., 1394-1416 (2012) · Zbl 1250.65149
[40] Kargaran, S.; Juttler, B.; Kleiss, S.; Mantzaflaris, A.; Takacs, T., Overlapping multi-patch structures in isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 325-353 (2019) · Zbl 1441.65105
[41] Antolin, P.; Buffa, A.; Puppi, R.; Wei, X., Overlapping multipatch isogeometric method with minimal stabilization. SIAM J. Sci. Comput., A330-A354 (2021) · Zbl 1475.65185
[42] Leonetti, L.; Liguori, F. S.; Magisano, D.; Kiendl, J.; Reali, A.; Garcea, G.; Chi, H., A robust penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches in large deformations. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1506.74188
[43] Pasch, T.; Leidinger, L. F.; Apostolatos, A.; Wuc̈hner, R.; Bletzinger, K.-U.; Duddeck, F., A priori penalty factor determination for (trimmed) NURBS-based shells with Dirichlet and coupling constraints in isogeometric analysis. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.74428
[44] Leidinger, L. F.; Breitenberger, M.; Bauer, A. M.; Hartmann, S.; Wuc̈hner, R.; Bletzinger, K.-U.; Duddeck, F.; Song, L., Explicit dynamic isogeometric B-rep analysis of penalty-coupled trimmed NURBS shells. Comput. Methods Appl. Mech. Engrg., 891-927 (2019) · Zbl 1441.74256
[45] Nitsche, J. A., Uber Ein Variationsprinzip Zur LÖSUng Dirichlet-PRoblemen Bei Verwendung Von TeilräUmen, Die Keinen Randbedingungen Uneworfen Sind, Vol. 36, 9-15 (1971), Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg · Zbl 0229.65079
[46] Sanders, J. D.; Laursen, T. A.; Puso, M. A., A Nitsche embedded mesh method. Comput. Mech., 243-257 (2012) · Zbl 1366.74075
[47] Apostolatos, A.; Schmidt, R.; Wuc̈hner, R.; Bletzinger, K.-U., A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. Internat. J. Numer. Methods Engrg., 473-504 (2014) · Zbl 1352.74315
[48] Nguyen, V. P.; Kerfriden, P.; Brino, M.; Bordas, S. P.A.; Bonisoli, E., Nitsche’s method for two and three dimensional NURBS patch coupling. Comput. Mech. vol., 1163-1182 (2014) · Zbl 1398.74379
[49] Ruess, M.; Schillinger, D.; Oz̈can, A. I.; Rank, E., Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput. Methods Appl. Mech. Engrg., 46-71 (2014) · Zbl 1296.74013
[50] Du, X.; Zhao, G.; Wang, W., Nitsche method for isogeometric analysis of Reissner-Mindlin plate with non-conforming multi-patches. Comput. Aided Geom. Design, 121-136 (2015) · Zbl 1417.74020
[51] Guo, Y.; Ruess, M., Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures. Comput. Methods Appl. Mech. Engrg., 881-905 (2015) · Zbl 1423.74573
[52] Schillinger, D.; Harari, I.; Hsu, M.-C.; Kamensky, D.; Stoter, S. K.F.; Yu, Y.; Zhao, Y., The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Comput. Methods Appl. Mech. Engrg., 625-652 (2016) · Zbl 1439.65192
[53] Hu, Q.; Chouly, F.; Hu, P.; Cheng, G.; Bordas, S. P.A., Skew-symmetric Nitsche’s formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact. Comput. Methods Appl. Mech. Engrg., 188-220 (2018) · Zbl 1440.74403
[54] Elfverson, D.; Larson, M.; Larsson, K., A new least squares stabilized Nitsche method for cut isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 1-16 (2019), arXiv:1804.05654 · Zbl 1441.65099
[55] Du, X.; Zhao, G.; Wang, W.; Fang, H., Nitsche’s method for non-conforming multipatch coupling in hyperelastic isogeometric analysis. Comput. Mech., 687-710 (2020) · Zbl 1477.74114
[56] Bouclier, R.; Passieux, J. C.; Salaün, M., Development of a new, more regular, mortar method for the coupling of NURBS subdomains within a NURBS patch: Application to a non-intrusive local enrichment of NURBS patches. Comput. Methods Appl. Mech. Engrg., 123-150 (2017) · Zbl 1439.74498
[57] Chasapi, M.; Dornisch, W.; Klinkel, S., Patch coupling in isogeometric analysis of solids in boundary representation using a mortar approach. Internat. J. Numer. Methods Engrg., 3206-3226 (2020) · Zbl 07863277
[58] Dornisch, W.; Vitucci, G.; Klinkel, S., The weak substitution method – an application of the mortar method for patch coupling in NURBS-based isogeometric analysis. Internat. J. Numer. Methods Engrg., 205-234 (2015) · Zbl 1352.65492
[59] Bernardi, C.; Maday, Y.; Patera, A. T., Domain decomposition by the Mortar element method, 269-286 · Zbl 0799.65124
[60] Dornisch, W.; Mul̈ler, R., Patch coupling with the isogeometric dual Mortar approach. Proc. Appl. Math. Mech., 193-194 (2016)
[61] Buffa, A.; Corno, J.; De Falco, C.; Schop̈s, S.; Hernández, R. V., Isogeometric mortar coupling for electromagnetic problems. SIAM J. Sci. Comput., B80-B104 (2020), arXiv:1901.00759 · Zbl 1447.35306
[62] Brivadis, E.; Buffa, A.; Wohlmuth, B.; Wunderlich, L., Isogeometric mortar methods. Comput. Methods Appl. Mech. Engrg., 292-319 (2015), arXiv:1407.8313 · Zbl 1425.65150
[63] Hesch, C.; Betsch, P., Isogeometric analysis and domain decomposition methods. Comput. Methods Appl. Mech. Eng., 104-112 (2012) · Zbl 1243.74182
[64] Matzen, M. E.; Bischoff, M., A weighted point-based formulation for isogeometric contact. Comput. Methods Appl. Mech. Engrg., 73-95 (2016) · Zbl 1439.74227
[65] Temizer, I.; Wriggers, P.; Hughes, T. J.R., Contact treatment in isogeometric analysis with NURBS. Comput. Methods Appl. Mech. Engrg., 1100-1112 (2011) · Zbl 1225.74126
[66] Farhat, C.; Roux, F.-X., A method of finite element tearing and interconnecting and its parallel solution algorithm. Internat. J. Numer. Methods Engrg., 1205-1227 (1991) · Zbl 0758.65075
[67] Hofer, C.; Langer, U., Dual-primal isogeometric tearing and interconnecting solvers for multipatch dG-IgA equations. Comput. Methods Appl. Mech. Engrg., 2-21 (2017) · Zbl 1439.65140
[68] Chapelle, D.; Bathe, K. J., The inf-sup test. Comput. Struct., 537-545 (1993) · Zbl 0780.73074
[69] Seitz, A.; Farah, P.; Kremheller, J.; Wohlmuth, B.; Wall, W.; Popp, A., Isogeometric dual mortar methods for computational contact mechanics. Comput. Methods Appl. Mech. Engrg., 259-280 (2016) · Zbl 1425.74490
[70] Dittmann, M.; Schuss, S.; Wohlmuth, B.; Hesch, C., Weak \(C^n\) coupling for multipatch isogeometric analysis in solid mechanics. Internat. J. Numer. Methods Engrg., 678-699 (2019) · Zbl 07865191
[71] Dassault System̀es SE, Mesh tie constraints, 1-13 (2020), https://abaqus-docs.mit.edu/2017/English/SIMACAECSTRefMap/simacst-c-tiedconstraint.htm
[72] McNeel, Rhino - rhinoceros 3D (2021), https://www.rhino3d.com/. (Accessed 9 Feb 2022)
[73] Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R.J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, I.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P., SciPy 1.0-fundamental algorithms for scientific computing in Python. Nature Methods, 261-272 (2020), arXiv:1907.10121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.