×

Order reduction of fracture mechanics in porous microstructures: a multiscale computing framework. (English) Zbl 1536.74222

Summary: We present a multiscale framework to systematically reduce the order of fracture-mechanics computations in complex porous microstructures captured by a pore-scale image (e.g., X-ray \(\mu\)CT). The framework allows formulating approximations that are more accurate than classical discrete element methods (DEM) and faster than high-fidelity direct numerical simulation (DNS) techniques, such as phase-field models (PFM). We propose two such approximations called the pore-level multiscale method (PLMM) and the image-based discrete element method (iDEM), the latter a generalization of classical DEM wherein the solid geometry is not simplified. Unlike iDEM, PLMM is equipped with the ability to iteratively control errors away from, but not at, the cracks. We refer to the uncorrected approximation as \(\mathrm{M}_0\), and that with \(\omega\) corrections as \(\mathrm{M}_\omega\). Both methods are based on the hypotheses that (H1) cracks nucleate at geometric constrictions of the solid, and (H2) bending/torsion moments at such constrictions are negligible. iDEM additionally assumes that (H3) the geometric enlargements of the solid are rigid. Through a series of benchmarks, performed on complex geometries subject to hydraulic, tensile, shear, and compressive loading, we show that H1 is largely valid under non-compressive loading, and H2 degrades the most under shear loading when bending/torsion moments dominate. H3 has two consequences: (1) \(\mathrm{M}_0\) predictions can be reproduced by iDEM at a fraction of the cost, (2) but to compute them, iDEM’s parameters (spring constants) must be calibrated to reference data, which may not be available. Moreover, the calibrated parameters are non-unique and depend on the reference data chosen. The foregoing benchmarks are validated against two well-known PFMs, in which inherent uncertainties and deficiencies are also identified, especially under compressive loading. These are attributed to the so-called energy splits used. Lastly, we derive and validate closed-form expressions for the tensile and shear strengths of the solid used by PLMM/iDEM and the length-scale parameter and fracture toughness in PFM. This work provides fundamental insights into how porous materials fail, and how accurate approximations based on such understanding can be constructed and refined in the future.

MSC:

74R10 Brittle fracture
74M25 Micromechanics of solids

Software:

MMMFEM
Full Text: DOI

References:

[1] Shukla, Richa; Ranjith, Pathegama; Haque, Asadul; Choi, Xavier, A review of studies on CO2 sequestration and caprock integrity. Fuel, 10, 2651-2664 (2010)
[2] Osborn, Stephen G.; Vengosh, Avner; Warner, Nathaniel R.; Jackson, Robert B., Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc. Natl. Acad. Sci., 20, 8172-8176 (2011)
[3] Marx, Jacob C.; Robbins, Samuel J.; Grady, Zane A.; Palmieri, Frank L.; Wohl, Christopher J.; Rabiei, Afsaneh, Polymer infused composite metal foam as a potential aircraft leading edge material. Appl. Surf. Sci. (2020)
[4] Marx, Jacob; Portanova, Marc; Rabiei, Afsaneh, Performance of composite metal foam armors against various threat sizes. J. Compos. Sci., 4, 176 (2020)
[5] Kim, Hyeong-Ki; Jeon, J. H.; Lee, Haeng-Ki, Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr. Build. Mater., 193-200 (2012)
[6] O’Sullivan, Catherine, Particulate Discrete Element Modelling: A Geomechanics Perspective (2011), CRC Press
[7] Wildenschild, Dorthe; Sheppard, Adrian P., X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour., 217-246 (2013)
[8] Cundall, Peter A.; Strack, Otto D. L., A discrete numerical model for granular assemblies. Geotechnique, 1, 47-65 (1979)
[9] Potyondy, David O.; Cundall, P. A., A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci., 8, 1329-1364 (2004)
[10] Moës, Nicolas; Dolbow, John; Belytschko, Ted, A finite element method for crack growth without remeshing. Internat. J. Numer. Methods Engrg., 1, 131-150 (1999) · Zbl 0955.74066
[11] Li, Kangan; Atallah, Nabil M.; Rodríguez-Ferran, Antonio; Valiveti, Dakshina M.; Scovazzi, Guglielmo, The shifted fracture method. Internat. J. Numer. Methods Engrg., 22, 6641-6679 (2021) · Zbl 07863814
[12] Mehmani, Yashar; Castelletto, Nicola; Tchelepi, Hamdi A., Nonlinear convergence in contact mechanics: Immersed boundary finite volume. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.74227
[13] Ambati, Marreddy; Gerasimov, Tymofiy; De Lorenzis, Laura, A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech., 2, 383-405 (2015) · Zbl 1398.74270
[14] Ouchi, Hisanao; Katiyar, Amit; York, Jason; Foster, John T.; Sharma, Mukul M., A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach. Comput. Mech., 3, 561-576 (2015) · Zbl 1311.74043
[15] Papadopoulos, Lia; Porter, Mason A.; Daniels, Karen E.; Bassett, Danielle S., Network analysis of particles and grains. J. Complex Netw., 4, 485-565 (2018)
[16] Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B., In situ grain fracture mechanics during uniaxial compaction of granular solids. J. Mech. Phys. Solids, 273-290 (2018)
[17] Mehmani, Yashar; Tchelepi, Hamdi A., Multiscale computation of pore-scale fluid dynamics: Single-phase flow. J. Comput. Phys., 1469-1487 (2018) · Zbl 1416.76219
[18] Mehmani, Yashar; Tchelepi, Hamdi A., Multiscale formulation of two-phase flow at the pore scale. J. Comput. Phys., 164-188 (2019) · Zbl 1452.65218
[19] Guo, Bo; Mehmani, Yashar; Tchelepi, Hamdi A., Multiscale formulation of pore-scale compressible Darcy-Stokes flow. J. Comput. Phys. (2019) · Zbl 1453.65304
[20] Mehmani, Yashar; Castelletto, Nicola; Tchelepi, Hamdi A., Multiscale formulation of frictional contact mechanics at the pore scale. J. Comput. Phys. (2021) · Zbl 07506524
[21] Li, Kangan; Mehmani, Yashar, A pore-level multiscale method for the elastic deformation of fractured porous media. J. Comput. Phys. (2023) · Zbl 07679180
[22] Li, Kangan; Mehmani, Yashar, A multiscale preconditioner for crack evolution in porous microstructures: accelerating phase-field methods. Internat. J. Numer. Methods Engrg. (2023)
[23] Mehmani, Yashar; Li, Kangan, A multiscale preconditioner for microscale deformation of fractured porous media. J. Comput. Phys. (2023) · Zbl 07679173
[24] Jenny, Patrick; Lee, S. H.; Tchelepi, Hamdi A., Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys., 1, 47-67 (2003) · Zbl 1047.76538
[25] Ivan Lunati, Patrick Jenny, The Multiscale Finite Volume Method: A flexible tool to model physically complex flow in porous media, in: Proceedings of European Conference of Mathematics of Oil Recovery X, Amsterdam, the Netherlands, 2006.
[26] Hajibeygi, Hadi; Bonfigli, Giuseppe; Hesse, Marc Andre; Jenny, Patrick, Iterative multiscale finite-volume method. J. Comput. Phys., 19, 8604-8621 (2008) · Zbl 1151.65091
[27] Sokolova, Irina; Bastisya, Muhammad Gusti; Hajibeygi, Hadi, Multiscale finite volume method for finite-volume-based simulation of poroelasticity. J. Comput. Phys., 309-324 (2019) · Zbl 07581574
[28] Babuška, Ivo; Osborn, John E., Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal., 3, 510-536 (1983) · Zbl 0528.65046
[29] Hou, Thomas Y.; Wu, Xiao-Hui, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys., 1, 169-189 (1997) · Zbl 0880.73065
[30] Castelletto, Nicola; Hajibeygi, Hadi; Tchelepi, Hamdi A., Multiscale finite-element method for linear elastic geomechanics. J. Comput. Phys., 337-356 (2017) · Zbl 1378.86014
[31] Xu, Fanxiang; Hajibeygi, Hadi; Sluys, Lambertus J., Multiscale extended finite element method for deformable fractured porous media. J. Comput. Phys. (2021) · Zbl 07513850
[32] Bernardi, Christine; Maday, Y.; Patera, A. T., A new nonconforming approach to domain decomposition: the mortar element method · Zbl 0797.65094
[33] Arbogast, Todd; Cowsar, Lawrence C.; Wheeler, Mary F.; Yotov, Ivan, Mixed finite element methods on nonmatching multiblock grids. SIAM J. Numer. Anal., 4, 1295-1315 (2000) · Zbl 1001.65126
[34] Arbogast, Todd; Pencheva, Gergina; Wheeler, Mary F.; Yotov, Ivan, A multiscale mortar mixed finite element method. Multiscale Model. Simul., 1, 319-346 (2007) · Zbl 1322.76039
[35] Ganis, Benjamin; Yotov, Ivan, Implementation of a mortar mixed finite element method using a multiscale flux basis. Comput. Methods Appl. Mech. Engrg., 49-52, 3989-3998 (2009) · Zbl 1231.76145
[36] Mehmani, Yashar; Anderson, Timothy; Wang, Yuhang; Aryana, Saman A.; Battiato, Ilenia; Tchelepi, Hamdi A.; Kovscek, Anthony R., Striving to translate shale physics across ten orders of magnitude: What have we learned?. Earth-Sci. Rev. (2021)
[37] Amor, Hanen; Marigo, Jean-Jacques; Maurini, Corrado, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J. Mech. Phys. Solids, 8, 1209-1229 (2009) · Zbl 1426.74257
[38] Borden, Michael J.; Verhoosel, Clemens V.; Scott, Michael A.; Hughes, Thomas JR; Landis, Chad M., A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Engrg., 77-95 (2012) · Zbl 1253.74089
[39] Rabczuk, Timon, Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. Int. Sch. Res. Notices (2013) · Zbl 1298.74002
[40] Francfort, Gilles A.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids, 8, 1319-1342 (1998) · Zbl 0966.74060
[41] Miehe, Christian; Hofacker, Martina; Welschinger, Fabian, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Engrg., 45-48, 2765-2778 (2010) · Zbl 1231.74022
[42] Behringer, RP; Bi, D.; Chakraborty, B.; Clark, A.; Dijksman, J.; Ren, J.; Zhang, J., Statistical properties of granular materials near jamming. J. Stat. Mech. Theory Exp., 6 (2014)
[43] Laubie, Hadrien; Radjai, Farhang; Pellenq, Roland; Ulm, Franz-Josef, Stress transmission and failure in disordered porous media. Phys. Rev. Lett., 7 (2017)
[44] Beucher, Serge; Lantuéjoul, Christian, Use of watersheds in contour detection
[45] Bass, Jay D., Elasticity of minerals, glasses, and melts, 45-63
[46] Gao, Hai; Xue, Ping; Lin, Weisi, A new marker-based watershed algorithm, II-81
[47] Maurer, Calvin R.; Qi, Rensheng; Raghavan, Vijay, A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell., 2, 265-270 (2003)
[48] Kornilov, Anton; Safonov, Ilia; Yakimchuk, Ivan, A review of watershed implementations for segmentation of volumetric images. J. Imaging, 5, 127 (2022)
[49] Meyer, Fernand, Topographic distance and watershed lines. Signal Process., 1, 113-125 (1994) · Zbl 0811.68125
[50] Vincent, Luc, Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process., 2, 176-201 (1993)
[51] Laursen, Tod A., Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis (2013), Springer Science & Business Media
[52] Olsson, Henrik; Åström, Karl Johan; De Wit, Carlos Canudas; Gäfvert, Magnus; Lischinsky, Pablo, Friction models and friction compensation. Eur. J. Control, 3, 176-195 (1998) · Zbl 0932.74052
[53] Curnier, Alain; Alart, Pierre, A generalized Newton method for contact problems with friction. J. Theoret. Appl. Mech. (1988) · Zbl 0679.73046
[54] Nguyen, Thanh Tung; Yvonnet, Julien; Bornert, Michel; Chateau, Camille; Sab, Karam; Romani, R.; Le Roy, Robert, On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int. J. Fract., 213-226 (2016)
[55] Zhang, Xue; Vignes, Chet; Sloan, Scott W.; Sheng, Daichao, Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale. Comput. Mech., 737-752 (2017)
[56] Mandal, Tushar Kanti; Nguyen, Vinh Phu; Wu, Jian-Ying, Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture. Eng. Fract. Mech. (2019)
[57] Berg, Steffen; Armstrong, Ryan; Wiegmann, Andreas, Gildehauser sandstone (2018), http://www.digitalrocksportal.org/projects/134
[58] Sas, Amelie; Helgason, Benedikt; Ferguson, Stephen J.; van Lenthe, G. Harry, Mechanical and morphological characterization of PMMA/bone composites in human femoral heads. J. Mech. Behav. Biomed. Mater. (2021)
[59] Romani, Raja, Rupture En Compression Des Structures Hétérogènes Á Base De Materiaux Quasi-Fragiles (2013), Université Pierre et Marie Curie, (Ph.D. thesis)
[60] Tang, C. A.; Wong, R. H.C.; Chau, Kam Tim; Lin, P., Modeling of compression-induced splitting failure in heterogeneous brittle porous solids. Eng. Fract. Mech., 4, 597-615 (2005)
[61] Ishutov, Sergey, Establishing framework for 3D printing porous rock models in curable resins. Transp. Porous Media, 431-448 (2019)
[62] Bay, Brian K.; Smith, Tait S.; Fyhrie, David P.; Saad, Malik, Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech., 217-226 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.