×

A pseudodifferential analytic perspective on Getzler’s rescaling. (English) Zbl 1536.58017

The Wodzicki residue is an important tool in index theory, which is local and can be used to express the index of the Dirac operator. The paper under review combines Gilkey’s invariance theory, Getzler’s rescaling method and Scott’s approach to the index via Wodzicki residues to establish local index formulas for certain differential operators.
More precisely, in order to apply Getzler’s rescaling method, the authors define a special class of differential operators acting on smooth sections of a vector bundle, which are called {\em geometric} with respect to a metric \(g\) (Definition 5.8). These geometric differential operators turn out to be closed under product (Proposition 5.11). Then authors define {\em rescalable} geometric differential operators (Definition 6.1) and prove some nice properties for these operators.
Applying the terminology and techniques developed in the paper to \(E=\Lambda T^*M\) and \(E=\Sigma M\), respectively, the authors obtain their localization formulas, namely Theorem 6.7 and Corollary 6.10. Finally, the authors show that the square of a Dirac operator is a rescalable geometric differential operator, hence fits into the framework. As a consequence, a localization formula (Equation (7.1)) for the square of the Dirac operator is achieved.
Reviewer: Yu Qiao (Xi’an)

MSC:

58J40 Pseudodifferential and Fourier integral operators on manifolds
47A53 (Semi-) Fredholm operators; index theories
15A66 Clifford algebras, spinors
58J20 Index theory and related fixed-point theorems on manifolds

References:

[1] Ammann, Bernd and Grosjean, Jean-Francois and Humbert, Emmanuel and Morel, Bertrand, A spinorial analogue of {A}ubin’s inequality, Mathematische Zeitschrift, 260, 1, 127-151, (2008) · Zbl 1145.53039 · doi:10.1007/s00209-007-0266-5
[2] Atiyah, M. and Bott, R. and Patodi, V. K., On the heat equation and the index theorem, Inventiones Mathematicae, 19, 279-330, (1973) · Zbl 0257.58008 · doi:10.1007/BF01425417
[3] Berline, Nicole and Getzler, Ezra and Vergne, Mich\`ele, Heat kernels and {D}irac operators, Grundlehren Text Ed., x+363, (2004), Springer, Berlin · Zbl 1037.58015
[4] Bourguignon, Jean-Pierre and Hijazi, Oussama and Milhorat, Jean-Louis and Moroianu, Andrei and Moroianu, Sergiu, A spinorial approach to {R}iemannian and conformal geometry, EMS Monogr. Math., ix+452, (2015), European Mathematical Society (EMS), Z\"urich · Zbl 1348.53001 · doi:10.4171/136
[5] Connes, Alain, Noncommutative geometry, xiv+661, (1994), Academic Press, Inc., San Diego, CA · Zbl 0818.46076
[6] Debord, Claire and Skandalis, Georges, Adiabatic groupoid, crossed product by {\( \mathbb{R}_+^\ast \)} and pseudodifferential calculus, Advances in Mathematics, 257, 66-91, (2014) · Zbl 1300.58007 · doi:10.1016/j.aim.2014.02.012
[7] Debord, Claire and Skandalis, Georges, Blow-up constructions for {L}ie groupoids and a {B}outet de {M}onvel type calculus, M\"unster Journal of Mathematics, 14, 1, 1-40, (2021) · Zbl 1460.58013 · doi:10.17879/59019640550
[8] Epstein, D. B. A., Natural tensors on {R}iemannian manifolds, Journal of Differential Geometry, 10, 4, 631-645, (1975) · Zbl 0321.53039 · doi:10.4310/jdg/1214433166
[9] van Erp, Erik and Yuncken, Robert, A groupoid approach to pseudodifferential calculi, Journal f\"ur die Reine und Angewandte Mathematik. [Crelle’s Journal], 756, 151-182, (2019) · Zbl 1433.58025 · doi:10.1515/crelle-2017-0035
[10] Freed, Daniel, Lectures on Dirac operators
[11] Getzler, Ezra, A short proof of the local {A}tiyah–{S}inger index theorem, Topology. An International Journal of Mathematics, 25, 1, 111-117, (1986) · Zbl 0607.58040 · doi:10.1016/0040-9383(86)90008-X
[12] Gilkey, Peter B., Invariance theory, the heat equation, and the {A}tiyah–{S}inger index theorem, Stud. Adv. Math., x+516, (1995), CRC Press, Boca Raton, FL · Zbl 0856.58001 · doi:10.1201/9780203749791
[13] Higson, Nigel, The tangent groupoid and the index theorem, Quanta of Maths, Clay Math. Proc., 11, 241-256, (2010), American Mathematical Society, Providence, RI · Zbl 1230.58016
[14] Higson, Nigel and Yi, Zelin, Spinors and the tangent groupoid, Documenta Mathematica, 24, 1677-1720, (2019) · Zbl 1429.58018 · doi:10.4171/DM/712
[15] Lawson, Jr., H. Blaine and Michelsohn, Marie-Louise, Spin geometry, Princeton Math. Ser., 38, xii+427, (1989), Princeton University Press, Princeton, NJ · Zbl 0688.57001
[16] Mickelsson, Jouko and Paycha, Sylvie, The logarithmic residue density of a generalized {L}aplacian, Journal of the Australian Mathematical Society, 90, 1, 53-80, (2011) · Zbl 1229.58023 · doi:10.1017/S144678871100108X
[17] Scott, Simon, Traces and determinants of pseudodifferential operators, Oxford Math. Monogr., xiv+676, (2010), Oxford University Press, Oxford · Zbl 1216.35192 · doi:10.1093/acprof:oso/9780198568360.001.0001
[18] Shubin, Mikhail A., Pseudo-differential operators and spectral theory, xii+288, (2001), Springer, Berlin · Zbl 0980.35180 · doi:10.1007/978-3-642-56579-3
[19] Wodzicki, Mariusz, Noncommutative residue. {I}. {F}undamentals, {\(K\)}-theory, Arithmetic and Geometry ({M}oscow, 1984-1986), Lecture Notes in Math., 1289, 320-399, (1987), Springer, Berlin · Zbl 0649.58033 · doi:10.1007/BFb0078372
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.