×

Simple closed geodesics in dimensions \(\geq 3\). (English) Zbl 1536.53092

Let \(M\) be a compact differentiable manifold of dimension \(n \ge 3\) endowed with a Riemannian metric or a reversible Finsler metric (in the second case, the norm \(\|v\|\) of a tangent vector \(v\) is a positive definite function \(f(v)\), the term reversible means that \(f(-v)=f(v)\) for all vectors \(v\)). The main result of the paper is the following: For a \(C^r\)-generic Riemannian metric with \(r \ge 2\) or a \(C^r\)-generic reversible Finsler metric with \(r \ge 4\), all prime closed geodesics are simple, and geometrically distinct closed geodesics do not intersect each other. Moreover, for a generic Riemannian metric on a compact and simply connected manifold \(M\) all closed geodesics are simple and the number \(N(t)\) of geometrically distinct closed geodesics of length \(\le t\) grows exponentially as \(t \to \infty\).

MSC:

53C22 Geodesics in global differential geometry
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)
58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable)

References:

[1] Abraham, R.: Bumpy metrics. In: Global Analysis. Proceedings of Symposia in Pure Mathematics, vol. XIV, pp. 1-3. American Mathematical Society, Providence RI (1970) · Zbl 0215.23301
[2] Anosov, D.V.: On generic properties of closed geodesics. Izv. Akad. Nauk. SSSR 46 (1982) Math. USSR Izv. 21, 1-29 (1983) · Zbl 0554.58043
[3] Bangert, V., Geodätische Linien auf Riemannschen Mannigfaltigkeiten, J. ber. d. Dt. Math.-Verein., 87, 39-66 (1985) · Zbl 0565.53028
[4] Bao, D.; Chern, S-S; Shen, Z., An Introduction to Riemann-Finsler Geometry (2000), New York: Springer, New York · Zbl 0954.53001 · doi:10.1007/978-1-4612-1268-3
[5] Bettiol, Renato G.; Giambò, Roberto, Genericity of nondegenerate geodesics with general boundary conditions, Topol. Methods Nonlinear Anal., 35, 339-365 (2010) · Zbl 1213.58012
[6] Bryant, RL; Foulon, P.; Ivanov, SV; Matveev, VS; Ziller, W., Geodesic behavior for Finsler metrics of constant positive flag curvature on \(S^2\), J. Differ. Geom., 117, 1-22 (2021) · Zbl 1486.53086 · doi:10.4310/jdg/1609902015
[7] Calabi, E.; Cao, J., Simple closed geodesics on convex surfaces, J. Differ. Geom., 36, 517-549 (1992) · Zbl 0768.53019 · doi:10.4310/jdg/1214453180
[8] Contreras, G., Geodesic flows with positive topological entropy, twist maps and hyperbolicity, Ann. Math., 2, 172, 761-808 (2010) · Zbl 1204.37032 · doi:10.4007/annals.2010.172.761
[9] Contreras, G.: Generic dynamics of geodesic flows. In: Proceedings of International Congress Mathematicians (ICM 2010) Hyderabad, India, 19-27 August 2010, vol. III: Invited Lectures, pp. 1729-1739. World Scientific, Hackensack, NJ (2011) · Zbl 1236.53068
[10] Philippis, G.; Marini, M.; Mazzucchelli, M.; Suhr, S., Closed geodesics on reversible Finsler 2-spheres, J. fixed point theory appl., 24, 19 (2022) · Zbl 1496.53058 · doi:10.1007/s11784-022-00962-9
[11] Eskin, A.; Mirzakhani, M.; Mohammadi, A., Effective counting of simple closed geodesics on hyperbolic surfaces, J. Eur. Math. Soc., 24, 3059-3108 (2022) · Zbl 1491.37033 · doi:10.4171/JEMS/1144
[12] Klingenberg, W., Riemannian Geometry (1995), Berlin: de Gruyter, Berlin · Zbl 0911.53022 · doi:10.1515/9783110905120
[13] Lusternik, L.; Schnirelmann, L., Sur le problème des trois géodésiques fermées sur les surfaces de genre \(0\), C. R. Acad. Sci. Paris, 189, 269-271 (1929) · JFM 55.0316.02
[14] Oancea, A.: Morse theory, closed geodesics, and the homology of free loop spaces. In: Free Loop Spaces in Geometry and Topology, IRMA IRMA Lectures in Mathematics and Theoretical Physics, vol. 24, pp. 67-109, with an appendix by U. Hryniewicz. European Mathematical Society, Zürich (2015) · Zbl 1377.53001
[15] Rademacher, HB, On a generic property of geodesic flows, Math. Ann., 298, 101-116 (1994) · Zbl 0813.53029 · doi:10.1007/BF01459728
[16] Rademacher, HB; Bao, D.; Bryant, R.; Chern, SS; Shen, Z., Non-reversible Finsler metrics of positive curvature, A Sampler of Riemann-Finsler Geometry, 261-302 (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1074.53062
[17] Rademacher, HB, Bumpy metrics on spheres and minimal index growth, J. Fixed Point Theory Appl., 19, 289-298 (2017) · Zbl 1378.53053 · doi:10.1007/s11784-016-0354-4
[18] Rademacher, HB; Taimanov, IA, The second closed geodesic, the fundamental group, and generic Finsler metrics, Math. Z., 302, 629-640 (2022) · Zbl 1504.53056 · doi:10.1007/s00209-022-03062-z
[19] Shen, Z., Lectures on Finsler Geometry (2001), Singapore: World Scientific, Singapore · Zbl 0974.53002 · doi:10.1142/4619
[20] Taimanov, IA, The type numbers of closed geodesics, Regul. Chaot. Dyn., 15, 84-100 (2010) · Zbl 1229.58015 · doi:10.1134/S1560354710010053
[21] Ziller, W., Geometry of the Katok examplex, Ergod. Theory Dyn. Syst., 3, 135-157 (1983) · Zbl 0559.58027 · doi:10.1017/S0143385700001851
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.