×

Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity. (English) Zbl 1536.35301

Summary: We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity \(f(\rho) = \rho^\sigma\), where \(\rho =|\psi|^2\) is the density with \(\psi\) the wave function and \(\sigma > 0\) is the exponent of the semi-smooth nonlinearity. Under the assumption of \(H^2\)-solution of the NLSE, we prove error bounds at \(O(\tau^{\frac{1}{2}+\sigma} + h^{1+2\sigma})\) and \(O(\tau + h^2)\) in \(L^2\)-norm for \(0<\sigma \leq \frac{1}{2}\) and \(\sigma \geq \frac{1}{2}\), respectively, and an error bound at \(O(\tau^\frac{1}{2} + h)\) in \(H^1\)-norm for \(\sigma \geq \frac{1}{2}\), where \(h\) and \(\tau\) are the mesh size and time step size, respectively. In addition, when \(\frac{1}{2}<\sigma <1\) and under the assumption of \(H^3\)-solution of the NLSE, we show an error bound at \(O(\tau^{\sigma} + h^{2\sigma})\) in \(H^1\)-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional \(L^2\)-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of \(0 < \sigma \leq \frac{1}{2}\), and to establish an \(l^\infty\)-conditional \(H^1\)-stability to obtain the \(l^\infty\)-bound of the numerical solution by using the mathematical induction and the error estimates for the case of \(\sigma \geq \frac{1}{2}\); and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35B65 Smoothness and regularity of solutions to PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] Akrivis, Georgios D., Finite difference discretization of the cubic Schr\"{o}dinger equation, IMA J. Numer. Anal., 115-124, 1993 · Zbl 0762.65070 · doi:10.1093/imanum/13.1.115
[2] Akrivis, Georgios D., On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schr\"{o}dinger equation, Numer. Math., 31-53, 1991 · Zbl 0739.65096 · doi:10.1007/BF01385769
[3] Antoine, Xavier, Computational methods for the dynamics of the nonlinear Schr\"{o}dinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 2621-2633, 2013 · Zbl 1344.35130 · doi:10.1016/j.cpc.2013.07.012
[4] G. E. Astrakharchik and B. A. Malomed, Dynamics of one-dimensional quantum droplets, Phys. Rev. A 98 (2018), 013631.
[5] Bao, Weizhu, Uniform error estimates of finite difference methods for the nonlinear Schr\"{o}dinger equation with wave operator, SIAM J. Numer. Anal., 492-521, 2012 · Zbl 1246.35188 · doi:10.1137/110830800
[6] Bao, Weizhu, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 1-135, 2013 · Zbl 1266.82009 · doi:10.3934/krm.2013.6.1
[7] Bao, Weizhu, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp., 99-128, 2013 · Zbl 1264.65146 · doi:10.1090/S0025-5718-2012-02617-2
[8] Bao, Weizhu, Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schr\"{o}dinger equation with wave operator, SIAM J. Numer. Anal., 1103-1127, 2014 · Zbl 1339.35279 · doi:10.1137/120866890
[9] Bao, Weizhu, Error estimates of a regularized finite difference method for the logarithmic Schr\"{o}dinger equation, SIAM J. Numer. Anal., 657-680, 2019 · Zbl 1416.35225 · doi:10.1137/18M1177445
[10] Bao, Weizhu, Regularized numerical methods for the logarithmic Schr\"{o}dinger equation, Numer. Math., 461-487, 2019 · Zbl 1507.35218 · doi:10.1007/s00211-019-01058-2
[11] Bao, Weizhu, Error estimates of local energy regularization for the logarithmic Schr\"{o}dinger equation, Math. Models Methods Appl. Sci., 101-136, 2022 · Zbl 1483.35168 · doi:10.1142/S0218202522500038
[12] Bao, Weizhu, Regularized numerical methods for the nonlinear Schr\"{o}dinger equation with singular nonlinearity, East Asian J. Appl. Math., 646-670, 2023 · Zbl 1527.65068
[13] Bao, Weizhu, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comput. Phys., 318-342, 2003 · Zbl 1028.82501 · doi:10.1016/S0021-9991(03)00102-5
[14] Bao, Weizhu, Effective one particle quantum dynamics of electrons: a numerical study of the Schr\"{o}dinger-Poisson-\( \text{X}\alpha\) model, Commun. Math. Sci., 809-828, 2003 · Zbl 1160.81497
[15] Besse, Christophe, Order estimates in time of splitting methods for the nonlinear Schr\"{o}dinger equation, SIAM J. Numer. Anal., 26-40, 2002 · Zbl 1026.65073 · doi:10.1137/S0036142900381497
[16] Bokanowski, Olivier, Local approximation for the Hartree-Fock exchange potential: a deformation approach, Math. Models Methods Appl. Sci., 941-961, 1999 · Zbl 0956.81097 · doi:10.1142/S0218202599000439
[17] Cabrera, C. R., Quantum liquid droplets in a mixture of Bose-Einstein condensates, Science, 301-304, 2018 · doi:10.1126/science.aao5686
[18] Cai, Yongyong, Analysis and computation for ground state solutions of Bose-Fermi mixtures at zero temperature, SIAM J. Appl. Math., 757-779, 2013 · Zbl 1292.35272 · doi:10.1137/120873820
[19] Cazenave, Thierry, Semilinear Schr\"{o}dinger Equations, Courant Lecture Notes in Mathematics, xiv+323 pp., 2003, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI · Zbl 1055.35003 · doi:10.1090/cln/010
[20] Celledoni, Elena, Symmetric exponential integrators with an application to the cubic Schr\"{o}dinger equation, Found. Comput. Math., 303-317, 2008 · Zbl 1147.65102 · doi:10.1007/s10208-007-9016-7
[21] Choi, Woocheol, On the splitting method for the nonlinear Schr\"{o}dinger equation with initial data in \(H^1\), Discrete Contin. Dyn. Syst., 3837-3867, 2021 · Zbl 1468.35184 · doi:10.3934/dcds.2021019
[22] Eilinghoff, Johannes, Fractional error estimates of splitting schemes for the nonlinear Schr\"{o}dinger equation, J. Math. Anal. Appl., 740-760, 2016 · Zbl 1339.65152 · doi:10.1016/j.jmaa.2016.05.014
[23] Erd\H{o}s, L\'{a}szl\'{o}, Derivation of the cubic non-linear Schr\"{o}dinger equation from quantum dynamics of many-body systems, Invent. Math., 515-614, 2007 · Zbl 1123.35066 · doi:10.1007/s00222-006-0022-1
[24] Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Gorlitz, and W. Ketterle, Two-species mixture of quantum degenerate Bose and Fermi gases, Phys. Rev. Lett. 88 (2002), 160401.
[25] Henning, Patrick, Crank-Nicolson Galerkin approximations to nonlinear Schr\"{o}dinger equations with rough potentials, Math. Models Methods Appl. Sci., 2147-2184, 2017 · Zbl 1377.65128 · doi:10.1142/S0218202517500415
[26] Hochbruck, Marlis, Exponential integrators, Acta Numer., 209-286, 2010 · Zbl 1242.65109 · doi:10.1017/S0962492910000048
[27] Y. Hu, Y. Fei, X.-L. Chen, and Y. Zhang, Collisional dynamics of symmetric two-dimensional quantum droplets, Front. Phys. 17 (2022), no. 6, 61505.
[28] Ignat, Liviu I., A splitting method for the nonlinear Schr\"{o}dinger equation, J. Differential Equations, 3022-3046, 2011 · Zbl 1216.35139 · doi:10.1016/j.jde.2011.01.028
[29] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, and T. Pfau, Observing the rosensweig instability of a quantum ferrofluid, Nature 530 (2016), no. 7589, 194-197.
[30] Kato, Tosio, On nonlinear Schr\"{o}dinger equations, Ann. Inst. H. Poincar\'{e} Phys. Th\'{e}or., 113-129, 1987 · Zbl 0632.35038
[31] Kn\"{o}ller, Marvin, A Fourier integrator for the cubic nonlinear Schr\"{o}dinger equation with rough initial data, SIAM J. Numer. Anal., 1967-1986, 2019 · Zbl 1422.65222 · doi:10.1137/18M1198375
[32] Lee, T. D., Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. (2), 1135-1145, 1957 · Zbl 0077.45003
[33] Lubich, Christian, On splitting methods for Schr\"{o}dinger-Poisson and cubic nonlinear Schr\"{o}dinger equations, Math. Comp., 2141-2153, 2008 · Zbl 1198.65186 · doi:10.1090/S0025-5718-08-02101-7
[34] Ostermann, Alexander, Error estimates at low regularity of splitting schemes for NLS, Math. Comp., 169-182, 2021 · Zbl 1482.65197 · doi:10.1090/mcom/3676
[35] Ostermann, Alexander, Error estimates of a Fourier integrator for the cubic Schr\"{o}dinger equation at low regularity, Found. Comput. Math., 725-765, 2021 · Zbl 1486.65208 · doi:10.1007/s10208-020-09468-7
[36] Ostermann, Alexander, Low regularity exponential-type integrators for semilinear Schr\"{o}dinger equations, Found. Comput. Math., 731-755, 2018 · Zbl 1402.65098 · doi:10.1007/s10208-017-9352-1
[37] Ostermann, Alexander, A second-order low-regularity integrator for the nonlinear Schr\"{o}dinger equation, Adv. Contin. Discrete Models, Paper No. 23, 14 pp., 2022 · doi:10.1186/s13662-022-03695-8
[38] Ostermann, Alexander, A fully discrete low-regularity integrator for the nonlinear Schr\"{o}dinger equation, J. Sci. Comput., Paper No. 9, 14 pp., 2022 · Zbl 1491.65085 · doi:10.1007/s10915-022-01786-y
[39] D. S. Petrov and G. E. Astrakharchik, Ultradilute low-dimensional liquids, Phys. Rev. Lett. 117 (2016), 100401.
[40] Porretta, Alessio, A note on the Sobolev and Gagliardo-Nirenberg inequality when \(p>N\), Adv. Nonlinear Stud., 361-371, 2020 · Zbl 1439.35015 · doi:10.1515/ans-2020-2086
[41] Rousset, Fr\'{e}d\'{e}ric, A general framework of low regularity integrators, SIAM J. Numer. Anal., 1735-1768, 2021 · Zbl 1486.65127 · doi:10.1137/20M1371506
[42] Sanz-Serna, J. M., Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Comp., 21-27, 1984 · Zbl 0555.65061 · doi:10.2307/2007397
[43] Shen, Jie, Spectral Methods, Springer Series in Computational Mathematics, xvi+470 pp., 2011, Springer, Heidelberg · Zbl 1227.65117 · doi:10.1007/978-3-540-71041-7
[44] Sulem, Catherine, The Nonlinear Schr\"{o}dinger Equation, Applied Mathematical Sciences, xvi+350 pp., 1999, Springer-Verlag, New York · Zbl 0928.35157
[45] Tourigny, Yves, Optimal \(H^1\) estimates for two time-discrete Galerkin approximations of a nonlinear Schr\"{o}dinger equation, IMA J. Numer. Anal., 509-523, 1991 · Zbl 0737.65095 · doi:10.1093/imanum/11.4.509
[46] Wang, Jilu, A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schr\"{o}dinger equation, J. Sci. Comput., 390-407, 2014 · Zbl 1306.65257 · doi:10.1007/s10915-013-9799-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.