×

Blowup for a damped wave equation with mass and general nonlinear memory. (English) Zbl 1536.35100

Summary: We investigate the blowup conditions to the Cauchy problem for a semilinear wave equation with scale-invariant damping, mass and general nonlinear memory term (see Eq. (1.1) in the Introduction). We first establish a local (in time) existence result for this problem by Banach’s fixed point theorem, where Palmieri’s decay estimates on the solution to the corresponding linear homogeneous equation play an essential role in the proof. We then formulate a blowup result for energy solutions by applying the iteration argument together with the test function method.

MSC:

35B44 Blow-up in context of PDEs
35L15 Initial value problems for second-order hyperbolic equations
35L71 Second-order semilinear hyperbolic equations
35R09 Integro-partial differential equations
Full Text: DOI

References:

[1] Chen, W., Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms, Nonlinear Anal., 202, 23, 2021 · Zbl 1450.35172 · doi:10.1016/j.na.2020.112160
[2] Chen, W., Palmieri, A.: Blow-up result for a semilinear wave equation with a nonlinear memory term, Anomalies in partial differential equations, Springer INdAM Ser 43 Springer, Cham (2021), pp. 77-97 · Zbl 1461.35068
[3] Chen, W.; Reissig, M., Blow-up of solutions to Nakao’s problem via an iteration argument, J. Differ. Equ., 275, 733-756, 2021 · Zbl 1455.35148 · doi:10.1016/j.jde.2020.11.009
[4] D’Abbicco, M., The threshold of effective damping for semilinear wave equations, Math. Methods Appl. Sci., 38, 1032-1045, 2015 · Zbl 1316.35201 · doi:10.1002/mma.3126
[5] do Nascimento, WN; Palmieri, A.; Reissig, M., Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, Math. Nachr., 108, 11-12, 1779-1805, 2017 · Zbl 1382.35166 · doi:10.1002/mana.201600069
[6] Friedman, A., Partial Differential Equations, 1976, New York: Krieger, New York · Zbl 0329.35001
[7] Georgiev, V.; Lindblad, H.; Sogge, CD, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 119, 6, 1291-1319, 1997 · Zbl 0893.35075 · doi:10.1353/ajm.1997.0038
[8] Glassey, RT, Existence in the large for \(u_{tt}-\Delta u = F (u)\) in two space dimensions, Math. Z., 178, 6, 233-261, 1981 · Zbl 0451.35039 · doi:10.1007/BF01262042
[9] Glassey, RT, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z., 177, 3, 323-340, 1981 · Zbl 0438.35045 · doi:10.1007/BF01162066
[10] Ikeda, M.; Sobajima, M., Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data, Math. Ann., 372, 3-4, 1017-1040, 2018 · Zbl 1421.35220 · doi:10.1007/s00208-018-1664-1
[11] Jiao, H.; Zhou, Z., An elementary proof of the blow-up for semilinear wave equation in high space dimensions, J. Differ. Equ., 189, 2, 355-365, 2003 · Zbl 1016.35049 · doi:10.1016/S0022-0396(02)00041-4
[12] John, F., Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28, 1-3, 235-268, 1979 · Zbl 0406.35042 · doi:10.1007/BF01647974
[13] Kato, T., Blow up solutions of some nonlinear hyperbolic equations, Commun. Pure Appl. Math., 33, 4, 501-505, 1980 · Zbl 0421.35053 · doi:10.1002/cpa.3160330403
[14] Lai, N-A; Takamura, H.; Wakasa, K., Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent, J. Differ. Equ., 263, 9, 5377-5394, 2017 · Zbl 1411.35206 · doi:10.1016/j.jde.2017.06.017
[15] Lindblad, H.; Sogge, CD, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math., 118, 5, 1047-1135, 1996 · Zbl 0869.35064 · doi:10.1353/ajm.1996.0042
[16] Martin, H., Mathematical analysis of some iterative methods for the reconstruction of memory kernels, Electron. Trans., 54, 483-498, 2021 · Zbl 07399336
[17] Palmieri, A., Global existence of solutions for semi-linear wave equation with scale-invariant damping and mass in exponentially weighted spaces, J. Math. Anal. Appl., 461, 2, 1215-1240, 2018 · Zbl 1392.35192 · doi:10.1016/j.jmaa.2018.01.063
[18] Palmieri, A.; Reissig, M., A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass, J. Differ. Equ., 266, 2-3, 1176-1220, 2019 · Zbl 1404.35065 · doi:10.1016/j.jde.2018.07.061
[19] Palmieri, A.; Tu, Z., Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity, J. Math. Anal. Appl., 470, 447-469, 2019 · Zbl 1415.35174 · doi:10.1016/j.jmaa.2018.10.015
[20] Schaeffer, J., The equation \(u_{tt}-\Delta u = |u|^p\) for the critical value of p, Proc. Roy. Soc. Edinburgh Sect. A, 101, 1-2, 31-44, 1985 · Zbl 0592.35080 · doi:10.1017/S0308210500026135
[21] Sideris, TC, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differ. Equ., 52, 3, 378-406, 1984 · Zbl 0555.35091 · doi:10.1016/0022-0396(84)90169-4
[22] Strauss, WA, Nonlinear scattering theory at low energy, J. Funct. Anal., 41, 1, 110-133, 1981 · Zbl 0466.47006 · doi:10.1016/0022-1236(81)90063-X
[23] Wakasugi, Y.: Critical exponent for the semilinear wave equation with scale invariant damping, Fourier analysis, Trends Math Birkhäuser/Springer, Birkhäuser/Springer, Cham, pp. 375-390, (2014) · Zbl 1408.35100
[24] Yordanov, BT; Zhang, QS, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231, 2, 361-374, 2006 · Zbl 1090.35126 · doi:10.1016/j.jfa.2005.03.012
[25] Zhou, Y., Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math. Ser. B, 28, 2, 205-212, 2007 · Zbl 1145.35439 · doi:10.1007/s11401-005-0205-x
[26] Zhou, Y., Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Partial Differ. Equ., 8, 2, 135-144, 1995 · Zbl 0836.35099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.