×

On the Ohsawa-Takegoshi extension theorem. (English) Zbl 1536.32002

One of the fundamental analytic tools used in complex geometry is the Ohsawa-Takegoshi (O-T) extension theorem. For any particular application one typically needs a new version of this result. In this paper variants of O-T theorem are proven when \(h_L\) a Hermitian metric on a line bundle \(L\) over a projective manifold \(X\) admits singularities, and the sub-variety \(Y\) of \(X\), from which we extend canonical forms, is a divisor with simple normal crossings. Since the statements are rather lengthy here I describe the first main result referring to the paper for other (and also related conjectures). Thus apart from the objects mentioned above one considers \(h_Y\) a smooth metric on the bundle corresponding to \(\mathcal{O} (Y )\). The curvatures of the metrics satisfy \[ \Theta _{h_L} \geq 0, \ \ \ \Theta _{h_L} \geq \delta \Theta _{h_Y} (Y), \ \ \ \delta >0. \] Locally \(h_L =e^{-\varphi _L}, \ \ h_Y=e^{-\varphi _Y}\), and for some holomorphic functions \(f_j\), not identically zero on components of \(Y,\) \[ \varphi _L = \sum a_j \log |f_j |^2 +\tau _L , \] where \(a_j \) are positive numbers and \(\tau _L\) is non-singular.
For a twisted canonical form on \(Y\): \(u\in H^0 (X, (K_X +Y+L)\otimes \mathcal{O}_X / \mathcal{O}_X (-Y) )\) its restrictions to coordinate charts \(u_{|V_j}\) have extensions \(U_j \in H^0 (V_j , (K_X +Y+L)\) satisfying \[ \int_{V_j } |U_j |^2 e^{-\varphi _L -\varphi _Y} < \infty . \] Apart from those rather standard assumptions there are two more concerning singularities. In some open set \(V\) containing singularities of \(Y\) there is a snc divisor \(W\) given by \(\{ z_j =0\} , \ j\leq m,\) such that \[ \varphi _L = \sum (1-\frac{1}{k_j })\log |z_j |^2 +\tau _L , \] \(k_j\) positive integers, \(\tau _L\) bounded.
Moreover the curvature of the restriction of \(h_L\) to \(V\) is bounded from below by constant times the restriction of a fixed conic Kähler metric \(\omega _{\mathcal C}\) locally quasi-isometric with \[ \sum _1 ^m \frac{idz_j \wedge d\bar{z}_j }{|z_j|^{2-2/k_j } } + \sum _{j>m} idz_j \wedge d\bar{z}_j . \] Under the above hypothesis \(u\) extends to \(X\) and there exists a section \(U\in H^0 (X , (K_X +Y+L)\) with \(U_{|Y}=u\) satisfying the estimate \[ \int_{X\setminus V}|U|^2 e^{-\varphi _L -\varphi _Y} d \omega _{\mathcal C} \leq C\left[\int_{Y\setminus V} |\frac{u}{ds}|e^{-\varphi _L} + \sum_j \left(\int _{Y_j \cap V} |\frac{u}{ds}|_{ \omega _{\mathcal C} }^{2/(1+a)} e^{-\frac{\varphi _L}{1+a} } dV _{ \omega _{\mathcal C} }\right)^{1+a} \right], \] where \(s\) is the canonical section of \(\mathcal{O} (Y )\) normalized by \(|s|_{h_Y} \leq e^{-\delta}\) , \(a\in (0,1]\) is a prescribed number, and then \(C\) depends on \(a\), constant from curvature inequalities, geometry of the conic metric, and the upper bound on \(Tr_{ \omega _{\mathcal C} }dd^c \tau _L .\) The explicit dependence can be extracted from the proof.

MSC:

32A60 Zero sets of holomorphic functions of several complex variables
32Q15 Kähler manifolds
32D15 Continuation of analytic objects in several complex variables

References:

[1] Bergman, S.: The Kernel Function and Conformal Mapping. AMS AMS Mathematical Surveys V. American Mathematical Society, Providence (1970) · Zbl 0208.34302
[2] Berndtsson, B., The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman Ann, Inst. Fourier (Grenoble), 46, 4, 1083-1094 (1996) · Zbl 0853.32024 · doi:10.5802/aif.1541
[3] Berndtsson, B., Integral formulas and the Ohsawa-Takegoshi extension theorem, Sci. China Ser. A, 48, Suppl., 61-73 (2005) · Zbl 1126.32002 · doi:10.1007/BF02884696
[4] Berndtsson, B.: An Introduction to Things \({\bar{\partial }}\) Analytic and Algebraic Geometry, pp. 7-76. IAS/Park City Mathematics Series, vol. 17. American Mathematical Society Providence (2010) · Zbl 1227.32039
[5] Berndtsson, B.; Lempert, L., A proof of the Ohsawa-Takegoshi theorem with sharp estimates, J. Math. Soc. Jpn., 68, 4, 1461-1472 (2016) · Zbl 1360.32006 · doi:10.2969/jmsj/06841461
[6] Blocki, Z., Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math., 193, 1, 149-158 (2013) · Zbl 1282.32014 · doi:10.1007/s00222-012-0423-2
[7] Cao, J.; Demailly, J-P; Matsumura, S., A general extension theorem for cohomology classes on non reduced analytic subspaces, Sci. China Math., 60, 6, 949-962 (2017) · Zbl 1379.32017 · doi:10.1007/s11425-017-9066-0
[8] Chan, M., Choi, Y.-J.: Extension with log-canonical measures and an improvement to the PLT extension of Demailly-Hacon-Paun. (2019). arXiv:1912.08076 · Zbl 1504.32026
[9] Chen, B-Y; Wu, J.; Wang, X., Ohsawa-Takegoshi type theorem and extension of plurisubharmonic functions, Math. Ann., 362, 1-2, 305-319 (2015) · Zbl 1330.32011 · doi:10.1007/s00208-014-1117-4
[10] Demailly, J-P, Regularization of closed positive currents and intersection theory, J. Algebraic Geom., 1, 3, 361-409 (1992) · Zbl 0777.32016
[11] Demailly, J.-P.: On the Ohsawa-Takegoshi-Manivel \(L^2\) extension theorem. In: Proceedings of the Conference in Honour of the 85th Birthday of Pierre Lelong, Paris, September 1997. Progress in Mathematics, vol. 188, pp. 47-82. Birkaüser, Boston (2000) · Zbl 0959.32019
[12] Demailly, J.-P.: Complex Analytic and Differential Geometry. Univ. Grenoble I, Inst. Fourier, Grenoble (2012) [on author’s web page]
[13] Demailly, J.-P.: Extension of holomorphic functions and cohomology classes from non reduced analytic subvarieties. Geometric Complex Analysis, pp. 97-113. Springer Proceedings in Mathematics & Statistics, vol. 246, Springer, Singapore (2018) · Zbl 1404.32036
[14] Demailly, J-P; Hacon, CD; Paun, M., Extension theorems, non-vanishing and the existence of good minimal models, Acta Math., 210, 203-259 (2013) · Zbl 1278.14022 · doi:10.1007/s11511-013-0094-x
[15] Donaldson, S., Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math., 213, 1, 63-106 (2014) · Zbl 1318.53037 · doi:10.1007/s11511-014-0116-3
[16] Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer Classics in Mathematics. Springer, Berlin (2001) · Zbl 1042.35002
[17] Guan, Q.; Zhou, X., A solution of an L2 extension problem with an optimal estimate and applications, Ann. Math. (2), 181, 3, 1139-1208 (2015) · Zbl 1348.32008 · doi:10.4007/annals.2015.181.3.6
[18] Hedenmalm, H., Wennman, A.: Off-spectral analysis of Bergman kernels. arXiv: 1805.00854 · Zbl 1473.30033
[19] Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd edn (Revised). Elsevier, North-Holland, Amsterdam (1990) · Zbl 0685.32001
[20] Hosono, G., On sharper estimates of Ohsawa-Takegoshi L2-extension theorem, J. Math. Soc. Jpn., 71, 3, 909-914 (2019) · Zbl 1439.32026 · doi:10.2969/jmsj/80018001
[21] Li, P., Geometric Analysis (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 1246.53002 · doi:10.1017/CBO9781139105798
[22] Liu, G., Székelyhidi, G.: Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below, II. arXiv:1903.04390 · Zbl 1482.53052
[23] Manivel, L.: Un théor \(\grave{m}\) e de prolongement L2 de sections holomorphes d’un fibré hermitien [An L2 extension theorem for the holomorphic sections of a Hermitian bundle]. Math. Z. 212(1), 107-122 (1993) · Zbl 0789.32015
[24] Matsumura, S., An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities, J. Algebraic Geom., 27, 2, 305-337 (2018) · Zbl 1422.32024 · doi:10.1090/jag/687
[25] McNeal, JD; Varolin, D., Analytic inversion of adjunction: L2 extension theorems with gain, Ann. Inst. Fourier (Grenoble), 57, 3, 703-718 (2007) · Zbl 1208.32011 · doi:10.5802/aif.2273
[26] McNeal, JD; Varolin, D., L2 Extension of dbar-closed forms from a hypersurface, J. Anal. Math., 139, 2, 421-451 (2019) · Zbl 1452.32046 · doi:10.1007/s11854-019-0062-2
[27] McNeal, J.D., Varolin, D.: Extension of jets with L2 estimates, and an application. arXiv:1707.04483 · Zbl 1208.32011
[28] Ohsawa, T.; Takegoshi, K., On the extension of L2 holomorphic functions, Math. Z., 195, 2, 197-204 (1987) · Zbl 0625.32011 · doi:10.1007/BF01166457
[29] Ohsawa, T., On the extension of L2 holomorphic functions. II, Publ. Res. Inst. Math. Sci., 24, 2, 265-275 (1988) · Zbl 0653.32012 · doi:10.2977/prims/1195175200
[30] Ohsawa, T., On the extension of L2 holomorphic functions. III. Negligible weights, Math. Z., 219, 2, 215-225 (1995) · Zbl 0823.32006 · doi:10.1007/BF02572360
[31] Ohsawa, T., On the extension of L2 holomorphic functions. V. Effects of generalization, Nagoya Math. J., 161, 1-21 (2001) · Zbl 0986.32002 · doi:10.1017/S0027763000022108
[32] Ohsawa, T.: On the Extension of L2 Holomorphic Functions. VI. A Limiting Case. Explorations in Complex and Riemannian Geometry, pp. 235-239. Contemporary in Mathematics, vol. 332. American Mathematical Society, Providence (2003) · Zbl 1049.32010
[33] Ohsawa, T.: An Update of Extension Theorems by the L2 Estimates for dbar. Hodge Theory and L2-Analysis, pp. 489-516. Advanced Lectures in Mathematics (ALM), vol. 39. International Press, Somerville (2017) · Zbl 1388.32003
[34] Ohsawa, T., Generalizations of theorems of Nishino and Hartogs by the L2 method, Math. Res. Lett., 27, 6, 1867-1884 (2020) · Zbl 1462.32030 · doi:10.4310/MRL.2020.v27.n6.a12
[35] Ohsawa, T.: An example concerning extension of holomorphic functions. Personal communication to the authors
[36] Paun, M., Siu’s invariance of plurigenera: a one-tower proof, J. Differ. Geom., 76, 3, 485-493 (2007) · Zbl 1122.32014 · doi:10.4310/jdg/1180135695
[37] Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge (1994) · Zbl 0830.53001
[38] Siu, Y-T, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differ. Geom., 17, 1, 55-138 (1982) · Zbl 0497.32025 · doi:10.4310/jdg/1214436700
[39] Siu, Y.-T.: Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type. In: Complex Geometry (Göttingen, 2000), pp. 223-277. Springer, Berlin (2002) · Zbl 1007.32010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.