×

On the rightmost eigenvalue of non-Hermitian random matrices. (English) Zbl 1536.15036

Consider a square complex matrix \(X\) with independent and identically distributed random coefficients \(x_{ij}, 1 \leq i, j \leq n\), with \[x_{ij} \overset{d}{=} n^{-1/2}\chi,\] where \(\chi\) is a centered complex random variable with \(\mathbb{E} |\chi|^2 = 1\), \(\mathbb{E} \chi^2 = 0\) and bounded higher moments.
The authors give asymptotics for the real part of the rightmost eigenvalue of \(X\). Asymptotics of the same form were obtained by the authors for the Ginibre ensemble in [J. Math. Phys. 63, No. 10, Article ID 103303, 11 p. (2022; Zbl 1507.15023)]. In fact, this result shows that the three terms asymptotics they obtain is universal. Understanding the real part of the rightmost eigenvalue is of importance in bounding the growth rate of solutions of random linear systems of differential equations.
The result relies on the previous work by the authors [loc. cit.] for the Ginibre ensemble. The asymptotics of the Ginibre ensemble and of the i.i.d. model considered here are shown to be the same using a Green function comparison theorem, whose use relies on the Hermitization theorem by V. L. Girko [Teor. Veroyatn. Primen. 29, No. 4, 669–679 (1984; Zbl 0565.60034)].

MSC:

15B52 Random matrices (algebraic aspects)
15A18 Eigenvalues, singular values, and eigenvectors
60B20 Random matrices (probabilistic aspects)

References:

[1] AKEMANN, G. and BENDER, M. (2010). Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles. J. Math. Phys. 51 103524. · Zbl 1314.62058
[2] AKEMANN, G. and PHILLIPS, M. J. (2014). The interpolating Airy kernels for the \(\mathit{\beta} = 1\) and \(\mathit{\beta} = 4\) elliptic Ginibre ensembles. J. Stat. Phys. 155 421-465. · Zbl 1295.15021
[3] ALJADEFF, J., STERN, M. and SHARPEE, T. (2015). Transition to chaos in random networks with cell-type-specific connectivity. Phys. Rev. Lett. 114 088101.
[4] ALLESINA, S., GRILLI, J., BARABÁS, G., TANG, S., ALJADEFF, J. and MARITAN, A. (2015). Predicting the stability of large structured food webs. Nat. Commun. 6 7842.
[5] ALLESINA, S. and TANG, S. (2015). The stability-complexity relationship at age 40: A random matrix perspective. Popul. Ecol. 57 63-75.
[6] ALT, J., ERDŐS, L. and KRÜGER, T. (2018). Local inhomogeneous circular law. Ann. Appl. Probab. 28 148-203. Digital Object Identifier: 10.1214/17-AAP1302 Google Scholar: Lookup Link MathSciNet: MR3770875 · Zbl 1388.60019 · doi:10.1214/17-AAP1302
[7] Arguin, L.-P., Belius, D. and Bourgade, P. (2017). Maximum of the characteristic polynomial of random unitary matrices. Comm. Math. Phys. 349 703-751. Digital Object Identifier: 10.1007/s00220-016-2740-6 Google Scholar: Lookup Link MathSciNet: MR3594368 · Zbl 1371.15036 · doi:10.1007/s00220-016-2740-6
[8] ARGUIN, L.-P., BELIUS, D., BOURGADE, P., RADZIWIŁ Ł, M. and SOUNDARARAJAN, K. (2019). Maximum of the Riemann zeta function on a short interval of the critical line. Comm. Pure Appl. Math. 72 500-535. · Zbl 1443.11161
[9] ARGUIN, L.-P., BOURGADE, P. and RADZIWIŁŁ, M. (2020). The Fyodorov-Hiary-Keating conjecture. I. ArXiv preprint.
[10] BAI, Z. D. (1997). Circular law. Ann. Probab. 25 494-529. Digital Object Identifier: 10.1214/aop/1024404298 Google Scholar: Lookup Link MathSciNet: MR1428519 · doi:10.1214/aop/1024404298
[11] BAI, Z. D. and YIN, Y. Q. (1986). Limiting behavior of the norm of products of random matrices and two problems of Geman-Hwang. Probab. Theory Related Fields 73 555-569. · Zbl 0586.60021
[12] BENDER, M. (2010). Edge scaling limits for a family of non-Hermitian random matrix ensembles. Probab. Theory Related Fields 147 241-271. · Zbl 1188.60003
[13] BEN AROUS, G., FYODOROV, Y. V. and KHORUZHENKO, B. A. (2021). Counting equilibria of large complex systems by instability index. Proc. Natl. Acad. Sci. USA 118 e2023719118.
[14] BEN AROUS, G. and PÉCHÉ, S. (2005). Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math. 58 1316-1357. Digital Object Identifier: 10.1002/cpa.20070 Google Scholar: Lookup Link MathSciNet: MR2162782 · Zbl 1075.62014 · doi:10.1002/cpa.20070
[15] BORDENAVE, C., CAPUTO, P., CHAFAÏ, D. and TIKHOMIROV, K. (2018). On the spectral radius of a random matrix: An upper bound without fourth moment. Ann. Probab. 46 2268-2286. · Zbl 1393.05130
[16] BORDENAVE, C., CHAFAÏ, D. and GARCÍA-ZELADA, D. (2022). Convergence of the spectral radius of a random matrix through its characteristic polynomial. Probab. Theory Related Fields 182 1163-1181. · Zbl 1492.30022
[17] BOURGADE, P. (2022). Extreme gaps between eigenvalues of Wigner matrices. J. Eur. Math. Soc. (JEMS) 24 2823-2873. Digital Object Identifier: 10.4171/jems/1141 Google Scholar: Lookup Link MathSciNet: MR4416591 · Zbl 1492.60014 · doi:10.4171/jems/1141
[18] BOURGADE, P., YAU, H.-T. and YIN, J. (2014). The local circular law II: The edge case. Probab. Theory Related Fields 159 619-660. Digital Object Identifier: 10.1007/s00440-013-0516-x Google Scholar: Lookup Link MathSciNet: MR3230004 · Zbl 1342.15028 · doi:10.1007/s00440-013-0516-x
[19] BOUTET DE MONVEL, A. and KHORUNZHY, A. (1999). Asymptotic distribution of smoothed eigenvalue density. II. Wigner random matrices. Random Oper. Stoch. Equ. 7 149-168. Digital Object Identifier: 10.1515/rose.1999.7.2.149 Google Scholar: Lookup Link MathSciNet: MR1689027 · Zbl 0952.60064 · doi:10.1515/rose.1999.7.2.149
[20] CHALKER, J. T. and MEHLIG, B. (1998). Eigenvector statistics in non-Hermitian random matrix ensembles. Phys. Rev. Lett. 81 3367-3370.
[21] CHHAIBI, R., MADAULE, T. and NAJNUDEL, J. (2018). On the maximum of the \(\operatorname{C} \mathit{\beta} \operatorname{E}\) field. Duke Math. J. 167 2243-2345. · Zbl 1457.60008
[22] CIPOLLONI, G., ERDŐS, L. and SCHRÖDER, D. (2020). Optimal lower bound on the least singular value of the shifted Ginibre ensemble. Probab. Math. Phys. 1 101-146. · Zbl 1485.15041
[23] CIPOLLONI, G., ERDŐS, L. and SCHRÖDER, D. (2021). Edge universality for non-Hermitian random matrices. Probab. Theory Related Fields 179 1-28. Digital Object Identifier: 10.1007/s00440-020-01003-7 Google Scholar: Lookup Link MathSciNet: MR4221653 · Zbl 1461.60008 · doi:10.1007/s00440-020-01003-7
[24] CIPOLLONI, G., ERDŐS, L. and SCHRÖDER, D. (2021). Fluctuation around the circular law for random matrices with real entries. Electron. J. Probab. 26 24. · Zbl 1477.60016
[25] CIPOLLONI, G., ERDŐS, L. and SCHRÖDER, D. (2021). Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices. Comm. Pure Appl. Math. · Zbl 1524.60020
[26] CIPOLLONI, G., ERDŐS, L. and SCHRÖDER, D. (2022). Density of small singular values of the shifted real Ginibre ensemble. Ann. Henri Poincaré 23 3981-4002. · Zbl 1503.15053
[27] CIPOLLONI, G., ERDŐS, L. and SCHRÖDER, D. (2022). On the condition number of the shifted real Ginibre ensemble. SIAM J. Matrix Anal. Appl. 43 1469-1487. · Zbl 1496.15025
[28] CIPOLLONI, G., ERDŐS, L., SCHRÖDER, D. and XU, Y. (2022). Directional extremal statistics for Ginibre eigenvalues. J. Math. Phys. 63 103303. · Zbl 1507.15023
[29] Erdős, L., Knowles, A. and Yau, H.-T. (2013). Averaging fluctuations in resolvents of random band matrices. Ann. Henri Poincaré 14 1837-1926. Digital Object Identifier: 10.1007/s00023-013-0235-y Google Scholar: Lookup Link MathSciNet: MR3119922 · Zbl 1296.15020 · doi:10.1007/s00023-013-0235-y
[30] Erdős, L., Knowles, A., Yau, H.-T. and Yin, J. (2013). The local semicircle law for a general class of random matrices. Electron. J. Probab. 18 59. Digital Object Identifier: 10.1214/EJP.v18-2473 Google Scholar: Lookup Link MathSciNet: MR3068390 · Zbl 1373.15053 · doi:10.1214/EJP.v18-2473
[31] ERDŐS, L., KRÜGER, T. and RENFREW, D. (2018). Power law decay for systems of randomly coupled differential equations. SIAM J. Math. Anal. 50 3271-3290. Digital Object Identifier: 10.1137/17M1143125 Google Scholar: Lookup Link MathSciNet: MR3816180 · Zbl 1392.60011 · doi:10.1137/17M1143125
[32] ERDŐS, L., KRÜGER, T. and RENFREW, D. (2019). Randomly coupled differential equations with elliptic correlations. Ann. Appl. Probab., to appear. · Zbl 1526.60007
[33] ERDŐS, L., KRÜGER, T. and SCHRÖDER, D. (2019). Random matrices with slow correlation decay. Forum Math. Sigma 7 e8. Digital Object Identifier: 10.1017/fms.2019.2 Google Scholar: Lookup Link MathSciNet: MR3941370 · Zbl 1422.60014 · doi:10.1017/fms.2019.2
[34] Erdős, L. and Yau, H.-T. (2017). A Dynamical Approach to Random Matrix Theory. Courant Lecture Notes in Mathematics 28. Amer. Math. Soc., Providence, RI. MathSciNet: MR3699468 · Zbl 1379.15003
[35] Erdős, L., Yau, H.-T. and Yin, J. (2012). Bulk universality for generalized Wigner matrices. Probab. Theory Related Fields 154 341-407. Digital Object Identifier: 10.1007/s00440-011-0390-3 Google Scholar: Lookup Link MathSciNet: MR2981427 · Zbl 1277.15026 · doi:10.1007/s00440-011-0390-3
[36] ERDŐS, L., YAU, H.-T. and YIN, J. (2012). Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229 1435-1515. Digital Object Identifier: 10.1016/j.aim.2011.12.010 Google Scholar: Lookup Link MathSciNet: MR2871147 · Zbl 1238.15017 · doi:10.1016/j.aim.2011.12.010
[37] FENG, R., TIAN, G., WEI, D. and YAO, D. (2022). Principal minors of Gaussian orthogonal ensemble. ArXiv preprint.
[38] FYODOROV, Y. V., HIARY, G. A. and KEATING, J. P. (2012). Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta function. Phys. Rev. Lett. 108 170601. Digital Object Identifier: 10.1103/PhysRevLett.108.170601 Google Scholar: Lookup Link · doi:10.1103/PhysRevLett.108.170601
[39] FYODOROV, Y. V. and KEATING, J. P. (2014). Freezing transitions and extreme values: Random matrix theory, and disordered landscapes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 20120503. Digital Object Identifier: 10.1098/rsta.2012.0503 Google Scholar: Lookup Link MathSciNet: MR3151088 · Zbl 1330.82028 · doi:10.1098/rsta.2012.0503
[40] FYODOROV, Y. V. and SIMM, N. J. (2016). On the distribution of the maximum value of the characteristic polynomial of GUE random matrices. Nonlinearity 29 2837-2855. Digital Object Identifier: 10.1088/0951-7715/29/9/2837 Google Scholar: Lookup Link MathSciNet: MR3544809 · Zbl 1350.15020 · doi:10.1088/0951-7715/29/9/2837
[41] GEMAN, S. (1986). The spectral radius of large random matrices. Ann. Probab. 14 1318-1328. · Zbl 0605.60037
[42] Ginibre, J. (1965). Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6 440-449. Digital Object Identifier: 10.1063/1.1704292 Google Scholar: Lookup Link MathSciNet: MR0173726 · Zbl 0127.39304 · doi:10.1063/1.1704292
[43] GIRKO, V. L. (1984). The circular law. Teor. Veroyatn. Primen. 29 669-679. MathSciNet: MR0773436 · Zbl 0565.60034
[44] HARPER, A. J. (2019). On the partition function of the Riemann zeta function, and the Fyodorov-Hiary-Keating conjecture. ArXiv preprint.
[45] HE, Y. and KNOWLES, A. (2017). Mesoscopic eigenvalue statistics of Wigner matrices. Ann. Appl. Probab. 27 1510-1550. Digital Object Identifier: 10.1214/16-AAP1237 Google Scholar: Lookup Link MathSciNet: MR3678478 · Zbl 1375.15055 · doi:10.1214/16-AAP1237
[46] HE, Y. and KNOWLES, A. (2021). Fluctuations of extreme eigenvalues of sparse Erdős-Rényi graphs. Probab. Theory Related Fields 180 985-1056. Digital Object Identifier: 10.1007/s00440-021-01054-4 Google Scholar: Lookup Link MathSciNet: MR4288336 · Zbl 1468.05155 · doi:10.1007/s00440-021-01054-4
[47] HUANG, J., LANDON, B. and YAU, H.-T. (2020). Transition from Tracy-Widom to Gaussian fluctuations of extremal eigenvalues of sparse Erdős-Rényi graphs. Ann. Probab. 48 916-962. Digital Object Identifier: 10.1214/19-AOP1378 Google Scholar: Lookup Link MathSciNet: MR4089498 · Zbl 1440.05181 · doi:10.1214/19-AOP1378
[48] JOHANSSON, K. (2007). From Gumbel to Tracy-Widom. Probab. Theory Related Fields 138 75-112. · Zbl 1116.60020
[49] KHORUNZHY, A. M., KHORUZHENKO, B. A. and PASTUR, L. A. (1996). Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37 5033-5060. Digital Object Identifier: 10.1063/1.531589 Google Scholar: Lookup Link MathSciNet: MR1411619 · Zbl 0866.15014 · doi:10.1063/1.531589
[50] KOPEL, P. (2015). Linear statistics of non-Hermitian matrices matching the real or complex Ginibre ensemble to four moments. ArXiv preprint.
[51] LAMBERT, G. (2020). Maximum of the characteristic polynomial of the Ginibre ensemble. Comm. Math. Phys. 378 943-985. Digital Object Identifier: 10.1007/s00220-020-03813-1 Google Scholar: Lookup Link MathSciNet: MR4134939 · Zbl 1446.82031 · doi:10.1007/s00220-020-03813-1
[52] LANDON, B., SOSOE, P. and YAU, H.-T. (2019). Fixed energy universality of Dyson Brownian motion. Adv. Math. 346 1137-1332. Digital Object Identifier: 10.1016/j.aim.2019.02.010 Google Scholar: Lookup Link MathSciNet: MR3914908 · Zbl 1417.82019 · doi:10.1016/j.aim.2019.02.010
[53] LEE, J. O. and SCHNELLI, K. (2015). Edge universality for deformed Wigner matrices. Rev. Math. Phys. 27 1550018. · Zbl 1328.15051
[54] LEE, J. O. and SCHNELLI, K. (2016). Tracy-Widom distribution for the largest eigenvalue of real sample covariance matrices with general population. Ann. Appl. Probab. 26 3786-3839. · Zbl 1384.60026
[55] Lee, J. O. and Schnelli, K. (2018). Local law and Tracy-Widom limit for sparse random matrices. Probab. Theory Related Fields 171 543-616. Digital Object Identifier: 10.1007/s00440-017-0787-8 Google Scholar: Lookup Link MathSciNet: MR3800840 · Zbl 1429.60012 · doi:10.1007/s00440-017-0787-8
[56] LYTOVA, A. and PASTUR, L. (2009). Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37 1778-1840. Digital Object Identifier: 10.1214/09-AOP452 Google Scholar: Lookup Link MathSciNet: MR2561434 · Zbl 1180.15029 · doi:10.1214/09-AOP452
[57] MAY, R. M. (1972). Will a large complex system be stable? Nature 238 413-4.
[58] MEHLIG, B. and CHALKER, J. T. (2000). Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles. J. Math. Phys. 41 3233-3256. Digital Object Identifier: 10.1063/1.533302 Google Scholar: Lookup Link MathSciNet: MR1755501 · Zbl 0977.82023 · doi:10.1063/1.533302
[59] Najnudel, J. (2018). On the extreme values of the Riemann zeta function on random intervals of the critical line. Probab. Theory Related Fields 172 387-452. Digital Object Identifier: 10.1007/s00440-017-0812-y Google Scholar: Lookup Link MathSciNet: MR3851835 · Zbl 1442.11125 · doi:10.1007/s00440-017-0812-y
[60] PAQUETTE, E. and ZEITOUNI, O. (2018). The maximum of the CUE field. Int. Math. Res. Not. IMRN 16 5028-5119. Digital Object Identifier: 10.1093/imrn/rnx033 Google Scholar: Lookup Link MathSciNet: MR3848227 · Zbl 1407.60010 · doi:10.1093/imrn/rnx033
[61] RAJAN, K. and ABBOTT, L. F. (2006). Eigenvalue spectra of random matrices for neural networks. Phys. Rev. Lett. 97 188104. Digital Object Identifier: 10.1103/PhysRevLett.97.188104 Google Scholar: Lookup Link · doi:10.1103/PhysRevLett.97.188104
[62] Saksman, E. and Webb, C. (2020). The Riemann zeta function and Gaussian multiplicative chaos: Statistics on the critical line. Ann. Probab. 48 2680-2754. Digital Object Identifier: 10.1214/20-AOP1433 Google Scholar: Lookup Link MathSciNet: MR4164452 · Zbl 1469.60162 · doi:10.1214/20-AOP1433
[63] SCHNELLI, K. and XU, Y. (2021). Convergence rate to the Tracy-Widom laws for the largest eigenvalue of sample covariance matrices. ArXiv preprint. · Zbl 1521.15033
[64] SCHNELLI, K. and XU, Y. (2022). Convergence rate to the Tracy-Widom laws for the largest eigenvalue of Wigner matrices. Comm. Math. Phys. 393 839-907. · Zbl 1502.60009
[65] SOMPOLINSKY, H., CRISANTI, A. and SOMMERS, H. J. (1988). Chaos in random neural networks. Phys. Rev. Lett. 61 259-262. Digital Object Identifier: 10.1103/PhysRevLett.61.259 Google Scholar: Lookup Link · doi:10.1103/PhysRevLett.61.259
[66] TAO, T. and VU, V. (2008). Random matrices: The circular law. Commun. Contemp. Math. 10 261-307. Digital Object Identifier: 10.1142/S0219199708002788 Google Scholar: Lookup Link MathSciNet: MR2409368 · Zbl 1156.15010 · doi:10.1142/S0219199708002788
[67] Tao, T. and Vu, V. (2011). Random matrices: Universality of local eigenvalue statistics. Acta Math. 206 127-204. Digital Object Identifier: 10.1007/s11511-011-0061-3 Google Scholar: Lookup Link MathSciNet: MR2784665 · Zbl 1217.15043 · doi:10.1007/s11511-011-0061-3
[68] TAO, T. and VU, V. (2015). Random matrices: Universality of local spectral statistics of non-Hermitian matrices. Ann. Probab. 43 782-874. · Zbl 1316.15042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.