×

An invariant property of Mahler measure. (English) Zbl 1536.11169

The (logarithmic Mahler) measure \(m(P)\) of a non-zero rational function \(P\in \mathbb{C}(x_{1},\dots ,x_{n})\) is defined by \[ m(P)=\frac{1}{(2\pi i)^{n}}\int_{\mathbb{T}^{n}}\log \left\vert P(x_{1},\dots ,x_{n})\right\vert \frac{dx_{1}}{x_{1}}\cdots \frac{dx_{n}}{x_{n}}, \] where the integration is taken over the unit torus \(\mathbb{T}^{n}=\{(x_{1},\dots ,x_{n})\in \mathbb{C}^{n}\mid \left\vert x_{1}\right\vert =\cdots =\left\vert x_{n}\right\vert =1\}\) with respect to the Haar measure.
The main result of the paper under review says that the measure of a polynomial \(P(x,y_{1},\dots ,y_{n})\in \mathbb{C}[x,y_{1},\dots ,y_{n}]\) is equal to the measure of the rational function \(\widetilde{P}\in \mathbb{C}(x,y_{1},\dots ,y_{n})\), obtained by replacing in \(P\) the variable \(x\) by the rational fraction \(\lambda x^{k}\overline{g}(x^{-1})/g(x)\), where \(g(x)\in \mathbb{C}[x]\) has all its roots outside the unit disc, \(k\) is an integer greater than the degree of the polynomial \(g\), \(\lambda\) is a complex number of modulus one, and \(\overline{g}\) is the polynomial resulting from the complex conjugation of the coefficients of \(g\).
This change of variables allows the authors to construct highly non-trivial polynomials with given measure and to settle some conjectural numerical formulas due to D. W. Boyd and F. Brunault. For example, by taking \[ P(x,y_{1},y_{2}):=x+1+(x-1)(y_{1}+y_{2}), \] with \[ (g(x),k,\lambda )\in \{(x+2,2,1),\ (x^{2}-2x+2,4,1),\ (x^{4}+x+2,5,1)\}, \] they obtain that the measures of the polynomials \(x^{2}+x+1+(x^{2}-1)(y_{1}+y_{2})\), \(x^{4}-x^{3}+x^{2}-x+1+(x^{4}-x^{3}+x-1)(y_{1}+y_{2})\) and \(x^{5}+x^{4}+x+1+(x^{5}-1)(y_{1}+y_{2})\) are all equal to \(\frac{28}{5\pi ^{2}}\zeta (3)\), where \(\zeta\) is the Riemann zeta function, since according to [J. D. Condon, Mahler measure evaluations in terms of polylogarithms. Austin: University of Texas (PhD Thesis) (2004)] \(m(P)=\frac{28}{5\pi ^{2}}\zeta (3)\).

MSC:

11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11R42 Zeta functions and \(L\)-functions of number fields

References:

[1] D. W.Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math. Bull.24 (1981), no. 4, 453-469. MR 644535. · Zbl 0474.12005
[2] D. W.Boyd, Mahler’s measure and special values of \(L\)‐functions, Experiment. Math.7 (1998), no. 1, 37-82. MR 1618282. · Zbl 0932.11069
[3] D. W.Boyd, Conjectural explicit formulas for the Mahler measure of some three variable polynomials, Personal Communication, 2006.
[4] D. W.Boyd and F.Rodriguez‐Villegas, Mahler’s measure and the dilogarithm. I, Canad. J. Math.54 (2002), no. 3, 468-492. MR 1900760. · Zbl 1032.11028
[5] D. W.Boyd, F.Rodriguez‐Villegas, and N. M.Dunfield, Mahler’s measure and the dilogarithm II, arXiv:math/0308041, 2003.
[6] F.Brunault and W.Zudilin, Many variations of Mahler measures—a lasting symphony, Australian Mathematical Society Lecture Series, vol. 28, Cambridge University Press, Cambridge, 2020. MR 4382435. · Zbl 1476.11002
[7] W.Chen, On the polynomials with all their zeros on the unit circle, J. Math. Anal. Appl.190 (1995), no. 3, 714-724. MR 1318593. · Zbl 0822.30008
[8] A.Cohn, Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z.14 (1922), no. 1, 110-148. MR 1544543. · JFM 48.0083.01
[9] J. D.Condon, Mahler measure evaluations in terms of polylogarithms, ProQuest LLC, Ann Arbor, MI, 2004, Ph.D. Thesis, The University of Texas at Austin. MR 2706324.
[10] G.Darboux, Mémoire sur les fonctions discontinues, Ann. Sci. École Norm. Sup. (2)4 (1875), 57-112. MR 1508624. · JFM 07.0243.02
[11] C.Deninger, Deligne periods of mixed motives, \(K\)‐theory and the entropy of certain \({\bf Z}^n\)‐actions, J. Amer. Math. Soc.10 (1997), no. 2, 259-281. MR 1415320. · Zbl 0913.11027
[12] G.Everest and T.Ward, Heights of polynomials and entropy in algebraic dynamics, Universitext, Springer London, Ltd., London, 1999. MR 1700272. · Zbl 0919.11064
[13] M. N.Lalín, Mahler measure of some \(n\)‐variable polynomial families, J. Number Theory116 (2006), no. 1, 102-139. MR 2197862. · Zbl 1162.11388
[14] M. N.Lalín, An algebraic integration for Mahler measure, Duke Math. J.138 (2007), no. 3, 391-422. MR 2322682. · Zbl 1196.11096
[15] M. N.Lalín, Mahler measures and computations with regulators, J. Number Theory128 (2008), no. 5, 1231-1271. MR 2406490. · Zbl 1138.11023
[16] M. N.Lalín, Mahler measure and elliptic curve \(L\)‐functions at \(s=3\), J. Reine Angew. Math.709 (2015), 201-218. MR 3430879. · Zbl 1330.11068
[17] M. N.Lalín and J.Lechasseur, Higher Mahler measure of an \(n\)‐variable family, Acta Arith.174 (2016), no. 1, 1-30. MR 3517530. · Zbl 1344.11069
[18] M. N.Lalín and C. J.Smyth, Unimodularity of zeros of self‐inversive polynomials, Acta Math. Hungar.138 (2013), no. 1-2, 85-101. MR 3015964. · Zbl 1299.26037
[19] M. N.Lalín and C. J.Smyth, Addendum to: unimodularity of zeros of self‐inversive polynomials, Acta Math. Hungar.147 (2015), no. 1, 255-257. MR 3391526. · Zbl 1363.26022
[20] P. D.Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc.50 (1944), 509-513. MR 10731. · Zbl 0061.01802
[21] D. H.Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2)34 (1933), no. 3, 461-479. MR 1503118. · Zbl 0007.19904
[22] K.Mahler, On some inequalities for polynomials in several variables, J. London Math. Soc.37 (1962), 341-344. MR 0138593. · Zbl 0105.06301
[23] V.Maillot, Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables (2000), no. 80, vi+129 pp. MR 1775582. · Zbl 0963.14009
[24] V.Maillot, Mahler measure in Arakelov geometry, Workshop lecture at “The many aspects of Mahler”s measure”, Banff International Research Station, Banff, Canada, 2003.
[25] F.Rodriguez‐Villegas, Modular Mahler measures. I, Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 17-48. MR 1691309. · Zbl 0980.11026
[26] M.Rogers and W.Zudilin, On the Mahler measure of \(1+X+1/X+Y+1/Y\), Int. Math. Res. Not.2014 (2014), no. 9, 2305-2326. MR 3207368. · Zbl 1378.11091
[27] C. J.Smyth, On measures of polynomials in several variables, Bull. Austral. Math. Soc.23 (1981), no. 1, 49-63. MR 615132. · Zbl 0442.10034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.