×

A topological theory for unoriented \(\mathrm{SL}(4)\) foams. (English) Zbl 1536.05191

Summary: Unoriented \(\mathrm{SL}(3)\) foams are two-dimensional CW complexes with generic singularities embedded in 3- and 4-manifolds. They naturally come up in the Kronheimer-Mrowka \(\mathrm{SO}(3)\) gauge theory for 3-orbifolds and, in the oriented case, in a categorification of the Kuperberg bracket quantum invariant. The present paper studies the more technically complicated case of \(\mathrm{SL}(4)\) foams. Combinatorial evaluation of unoriented \(\mathrm{SL}(4)\) foams is defined and state spaces for it are studied. In particular, over a suitably localized ground ring, the state space of any web is free of the rank given by the number of its 4-colorings.

MSC:

05C15 Coloring of graphs and hypergraphs
05A30 \(q\)-calculus and related topics
57M15 Relations of low-dimensional topology with graph theory
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
18N25 Categorification

References:

[1] Aganagic M.: Homological knot invariants from mirror symmetry. arXiv:2207.14104 (2022)
[2] Anno, R.; Vinoth, N., Exotic \(t\)-structures for two-block Springer fibres, Trans. Am. Math. Soc, 376, 3, 1523-1552, 2023 · Zbl 1524.14037 · doi:10.1090/tran/8765
[3] Abouzaid, M.; Smith, I., Khovanov homology from Floer cohomology, J. Am. Math. Soc., 32, 1, 1-79, 2019 · Zbl 1401.57005 · doi:10.1090/jams/902
[4] Bernstein, J.; Frenkel, I.; Khovanov, M., A categorification of the Temperley-Lieb algebra and Schur quotients of \(U({\mathfrak{sl} }_2)\) via projective and Zuckerman functors, Sel. Math., 5, 2, 199-241, 1999 · Zbl 0981.17001 · doi:10.1007/s000290050047
[5] Blanchet, C.; Habegger, N.; Masbaum, G.; Vogel, P., Topological quantum field theories derived from the Kauffman bracket, Topology, 34, 4, 883-927, 1995 · Zbl 0887.57009 · doi:10.1016/0040-9383(94)00051-4
[6] Boozer, D., Computer bounds for Kronheimer-Mrowka foam evaluation, Exp. Math., 2021 · Zbl 1527.05058 · doi:10.1080/10586458.2021.1982078
[7] Boozer, D.: The combinatorial and gauge-theoretic foam evaluation functors are not the same. arXiv:2304.07659 (2023)
[8] Chudnovsky, M.; Edwards, K.; Kawarabayashi, K.; Seymour, P., Edge-colouring seven-regular planar graphs, J. Combin. Theory Ser. B, 115, 276-302, 2015 · Zbl 1319.05051 · doi:10.1016/j.jctb.2014.11.005
[9] Cautis, S.; Kamnitzer, J., Knot homology via derived categories of coherent sheaves. II. \( \mathfrak{sl}_m\) case, Invent. Math., 174, 1, 165-232, 2008 · Zbl 1298.57007 · doi:10.1007/s00222-008-0138-6
[10] Cautis, S.; Kamnitzer, J.; Morrison, S., Webs and quantum skew Howe duality, Math. Ann., 360, 1-2, 351-390, 2014 · Zbl 1387.17027 · doi:10.1007/s00208-013-0984-4
[11] Gukov, S.; Schwarz, A.; Vafa, C., Khovanov-Rozansky homology and topological strings, Lett. Math. Phys., 74, 1, 53-74, 2005 · Zbl 1105.57011 · doi:10.1007/s11005-005-0008-8
[12] Guenin, B.: Packing \({T}\)-joins and edge-colouring in planar graphs. Math. Oper. Res. (2014) (To appear)
[13] Kempe, AB, On the geographical problem of the four colours, Am. J. Math., 2, 3, 193-200, 1879 · doi:10.2307/2369235
[14] Khovanov, M., sl(3) link homology, Algebr. Geom. Topol., 4, 1045-1081, 2004 · Zbl 1159.57300 · doi:10.2140/agt.2004.4.1045
[15] Khovanov, M.: Universal construction of topological theories in two dimensions. arXiv:2007.03361 (2020)
[16] Kim, D.: Graphical calculus on representations of quantum lie algebras. Ph.D. thesis, University of California, Davis. arXiv:math/0310143 (2003)
[17] Khovanov, M., Kitchloo, N.: A deformation of Robert-Wagner foam evaluation and link homology. Contemp. Math. arXiv:2004.14197 (2020) (To appear)
[18] Kronheimer, PB; Mrowka, TS, Exact triangles for \(SO(3)\) instanton homology of webs, J. Topol., 9, 3, 774-796, 2016 · Zbl 1371.57027 · doi:10.1112/jtopol/jtw010
[19] Kronheimer, PB; Mrowka, TS, A deformation of instanton homology for webs, Geom. Topol., 23, 3, 1491-1547, 2019 · Zbl 1444.57021 · doi:10.2140/gt.2019.23.1491
[20] Kronheimer, PB; Mrowka, TS, Tait colorings, and an instanton homology for webs and foams, J. Eur. Math. Soc. (JEMS), 21, 1, 55-119, 2019 · Zbl 1423.57050 · doi:10.4171/JEMS/831
[21] Khovanov, M.; Rozansky, L., Matrix factorizations and link homology, Fund. Math., 199, 1, 1-91, 2008 · Zbl 1145.57009 · doi:10.4064/fm199-1-1
[22] Khovanov, M.; Robert, L-H, Foam evaluation and Kronheimer-Mrowka theories, Adv. Math., 376, 2021 · Zbl 1455.57019 · doi:10.1016/j.aim.2020.107433
[23] Khovanov, M.; Robert, L-H, Conical \(SL(3)\) foams, J. Comb. Algebra, 6, 1-2, 79-108, 2022 · Zbl 1492.05034 · doi:10.4171/jca/61
[24] Manolescu, C., Link homology theories from symplectic geometry, Adv. Math., 211, 1, 363-416, 2007 · Zbl 1117.57012 · doi:10.1016/j.aim.2006.09.007
[25] Mrudul, M.T.: Webs and Foams of Simple Lie Algebras. Ph.D. thesis. Columbia University (2023)
[26] Mackaay, M.; Stošić, M.; Vaz, P., \( \mathfrak{sl} (N)\)-link homology \((N\ge 4)\) using foams and the Kapustin-Li formula, Geom. Topol., 13, 2, 1075-1128, 2009 · Zbl 1202.57017 · doi:10.2140/gt.2009.13.1075
[27] Mackaay, M.; Vaz, P., The universal \({\rm sl}_3\)-link homology, Algebra Geom. Topol., 7, 1135-1169, 2007 · Zbl 1170.57011 · doi:10.2140/agt.2007.7.1135
[28] Queffelec, H.; Rose, DEV, The \(\mathfrak{sl}_n\) foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality, Adv. Math., 302, 1251-1339, 2016 · Zbl 1360.57025 · doi:10.1016/j.aim.2016.07.027
[29] Robert, L-H; Wagner, E., A closed formula for the evaluation of foams, Quantum Topol., 11, 3, 411-487, 2020 · Zbl 1476.57054 · doi:10.4171/qt/139
[30] Seidel, P.; Smith, I., A link invariant from the symplectic geometry of nilpotent slices, Duke Math. J., 134, 3, 453-514, 2006 · Zbl 1108.57011 · doi:10.1215/S0012-7094-06-13432-4
[31] Stroppel, C.; Sussan, J., A Lie theoretic categorification of the coloured Jones polynomial, J. Pure Appl. Algebra, 226, 10, 2022 · Zbl 1497.57014 · doi:10.1016/j.jpaa.2022.107043
[32] Sussan, J.: Category O and sl(k) link invariants. ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)-Yale University. https://www.proquest.com/docview/304773953. arXiv:math/0701045
[33] Tutte, WT, A ring in graph theory, Proc. Camb. Philos. Soc., 43, 26-40, 1947 · Zbl 0031.41803 · doi:10.1017/s0305004100023173
[34] Webster, B., Knot invariants and higher representation theory, Mem. Am. Math. Soc., 250, 1191, v+141, 2017 · Zbl 1446.57001 · doi:10.1090/memo/1191
[35] Witten, E.: Two lectures on the Jones polynomial and Khovanov homology. In: Lectures on Geometry, Clay Lect. Notes, pp. 1-27. Oxford University Press, Oxford (2017). arXiv:1401.6996 · Zbl 1393.57004
[36] Wu, H., A colored \(\mathfrak{sl} (N)\) homology for links in \(S^3\), Diss. Math., 499, 1-217, 2014 · Zbl 1320.57020 · doi:10.4064/dm499-0-1
[37] Yonezawa, Y., Quantum \((\mathfrak{sl}_n,\wedge V_n)\) link invariant and matrix factorizations, Nagoya Math. J., 204, 69-123, 2011 · Zbl 1271.57033 · doi:10.1215/00277630-1431840
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.