×

Free energy, entropy, and magnetization of a one-dimensional Ising model of a diluted magnet. (English. Russian original) Zbl 1535.82017

Theor. Math. Phys. 217, No. 2, 1788-1794 (2023); translation from Teor. Mat. Fiz. 217, No. 2, 430-437 (2023).
Summary: We consider a one-dimensional Ising model (chain) with the the nearest-neighbor interaction and with a random nonmagnetic dilution. We find the exact free energy of such a chain as a function of the impurity concentration, temperature, and the external magnetic field. In the case of antiferromagnetic interaction in the chain, we find the specific magnetization, the mean value of the product of neighboring spins, and the entropy as functions of these parameters. We study the residual system entropy.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82D40 Statistical mechanics of magnetic materials
Full Text: DOI

References:

[1] Ziman, J. M., Models of Disorder (1979), Cambridge: Cambridge Univ. Press, Cambridge
[2] Ke, X.; Freitas, R. S.; Ueland, B. G.; Lau, G. C.; Dahlberg, M. L.; Cava, R. J.; Moessner, R.; Schiffer, P., Nonmonotonic zero-point entropy in diluted spin ice, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.137203
[3] Baxter, R. J., Exactly Solved Models in Statistical Mechanics (1982), London: Acad. Press, London · Zbl 0538.60093
[4] Dzyuba, Z. V.; Udodov, V. N., Susceptibility critical exponent of a 1D Ising ring-type ferromagnetic, Phys. Solid State, 60, 1323-1325 (2018) · doi:10.1134/S1063783418070107
[5] Tsuvarev, E. S.; Kassan-Ogly, F. A., Decorated Ising chain in a magnetic field, JETP, 131, 1125-1138 (2020)
[6] Semkin, S. V.; Smagin, V. P.; Gusev, E. G., Magnetic susceptibility of a diluted Ising magnet, Theoret. and Math. Phys., 201, 1655-1663 (2019) · Zbl 1441.82004 · doi:10.1134/S0040577919110096
[7] Kvasnikov, I. A., Thermodynamics and Statistical Physics (2002), Moscow: Editorial URSS, Moscow
[8] Murtazaev, A. K.; Ramazanov, M. K.; Murtazaev, K. Sh.; Magomedov, M. A.; Badiev, M. K., Effect of magnetic field on the thermodynamic and magnetic properties of the antiferromagnetic Ising model on a body-centered cubic lattice, Phys. Solid State, 62, 273-277 (2020) · Zbl 1496.82007 · doi:10.1134/S1063783420020171
[9] Shevchenko, Y. A.; Nefedev, K. V.; Kapitan, V. Y., Specific heat of square spin ice in finite point Ising-like dipoles model, Solid State Phenom., 245, 23-27 (2015) · doi:10.4028/www.scientific.net/SSP.245.23
[10] Farhan, A.; Kleibert, A.; Derlet, P. M.; Anghinolfi, L.; Balan, A.; Chopdekar, R. V.; Wyss, M.; Gliga, S.; Nolting, F.; Heyderman, L. J., Thermally induced magnetic relaxation in building blocks of artificial kagome spin ice, Phys. Rev. B, 89 (2014) · doi:10.1103/PhysRevB.89.214405
[11] Zhou, H. D.; Wiebe, C. R.; Janik, J. A.; Balicas, L.; Yo, Y. J.; Qiu, Y.; Copley, J. R. D.; Gardner, J. S., Dynamic spin ice: \(Pr_2 Sn_2 O_7\), Phys. Rev. Lett., 101 (2008) · doi:10.1103/PhysRevLett.101.227204
[12] Semkin, S. V.; Smagin, V. P.; Tarasov, V. S., Frustrations in a diluted Ising magnet on the Bethe lattice, JETP, 134, 713-719 (2022) · doi:10.1134/S1063776122060048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.