×

Linear and nonlinear benchmarks between the CLT code and the M3D-C1 code for the 2/1 resistive tearing mode and the 1/1 resistive kink mode. (English) Zbl 1535.76067

Summary: The linear and nonlinear benchmarks between the CLT code and the M3D-C1 code for the 2/1 resistive tearing mode and the 1/1 resistive kink mode are presented. CLT is an explicit finite difference code, while M3D-C1 is an implicit finite element code. Although the implementations of CLT and M3D-C1 are totally different, we find that the simulation results of the resistive-kink mode and the \(m/n = 2/1\) tearing mode from M3D-C1 and CLT are almost the same, including the linear and nonlinear growth rates, the mode structures, the nonlinear saturation levels, the Poincare plots, and the scaling laws. This confirms that the nonlinear results for the 1/1 resistive-kink mode and 2/1 tearing mode are accurate and reliable.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

XTOR-2F

References:

[1] Hender, T. C.; Wesley, J. C.; Bialek, J.; Bondeson, A.; Boozer, A. H.; Buttery, R. J.; Garofalo, A.; Goodman, T. P.; Granetz, R. S.; Gribov, Y.; Gruber, O.; Gryaznevich, M.; Giruzzi, G.; Günter, S.; Hayashi, N.; Helander, P.; Hegna, C. C.; Howell, D. F.; Humphreys, D. A.; Huysmans, G. T.A.; Hyatt, A. W.; Isayama, A.; Jardin, S. C.; Kawano, Y.; Kellman, A.; Kessel, C.; Koslowski, H. R.; Haye, R. J.L.; Lazzaro, E.; Liu, Y. Q.; Lukash, V.; Manickam, J.; Medvedev, S.; Mertens, V.; Mirnov, S. V.; Nakamura, Y.; Navratil, G.; Okabayashi, M.; Ozeki, T.; Paccagnella, R.; Pautasso, G.; Porcelli, F.; Pustovitov, V. D.; Riccardo, V.; Sato, M.; Sauter, O.; Schaffer, M. J.; Shimada, M.; Sonato, P.; Strait, E. J.; Sugihara, M.; Takechi, M.; Turnbull, A. D.; Westerhof, E.; Whyte, D. G.; Yoshino, R.; Zohm, H., Nucl. Fusion, 47, S128 (2007)
[2] Chang, Z.; Callen, J. D.; Fredrickson, E. D.; Budny, R. V.; Hegna, C. C.; McGuire, K. M.; Zarnstorff, M. C., Phys. Rev. Lett., 74, 4663-4666 (1995)
[3] Sauter, O.; Westerhof, E.; Mayoral, M. L.; Alper, B.; Belo, P. A.; Buttery, R. J.; Gondhalekar, A.; Hellsten, T.; Hender, T. C.; Howell, D. F.; Johnson, T.; Lamalle, P.; Mantsinen, M. J.; Milani, F.; Nave, M. F.F.; Nguyen, F.; Pecquet, A. L.; Pinches, S. D.; Podda, S.; Rapp, J., Phys. Rev. Lett., 88, Article 105001 pp. (2002)
[4] Buttery, R. J.; Hender, T. C.; Howell, D. F.; Haye, R. J.L.; Sauter, O.; Testa, D., Nucl. Fusion, 43, 69 (2003)
[5] Kadomtsev, B., Sov. J. Plasma Phys., 1, 389-391 (1975)
[6] Coppi, B.; Galvao, R.; Pellat, R.; Rosenbluth, M.; Rutherford, P., Fiz. Plazmy, 2, 961-966 (1976)
[7] Wan, Y. X.; Li, J. G.; Liu, Y.; Wang, X. L.; Vincent, C.; Chen, C. G.; Duan, X. R.; Fu, P.; Gao, X.; Feng, K. M.; Liu, S.l.; Song, Y. T.; Weng, P. D.; Wan, B. N.; Wan, F. R.; Wang, H. Y.; Wu, S. T.; Ye, M. Y.; Yang, Q. W.; Zheng, G. Y.; Zhuang, G.; Li, Q., Nucl. Fusion, 57, Article 102009 pp. (2017)
[8] Aymar, R.; Barabaschi, P.; Shimomura, Y., Plasma Phys. Control. Fusion, 44, 519 (2002)
[9] Furth, H. P.; Killeen, J.; Rosenbluth, M. N., Phys. Fluids, 6, 459-484 (1963)
[10] Rutherford, P. H., Phys. Fluids, 16, 1903-1908 (1973)
[11] White, R. B.; Monticello, D. A.; Rosenbluth, M. N.; Waddell, B. V., Phys. Fluids, 20, 800-805 (1977)
[12] Porcelli, F.; Boucher, D.; Rosenbluth, M. N., Plasma Phys. Control. Fusion, 38, 2163 (1996)
[13] Denton, R. E.; Drake, J. F.; Kleva, R. G.; Boyd, D. A., Phys. Rev. Lett., 56, 2477-2480 (1986)
[14] Aydemir, A. Y.; Wiley, J. C.; Ross, D. W., Phys. Fluids, B Plasma Phys., 1, 774-787 (1989)
[15] Lütjens, H.; Luciani, J.-F., J. Comput. Phys., 229, 8130-8143 (2010) · Zbl 1220.76055
[16] Sovinec, C. R.; King, J. R., J. Comput. Phys., 229, 5803-5819 (2010) · Zbl 1346.82036
[17] Jardin, S. C.; Ferraro, N.; Luo, X.; Chen, J.; Breslau, J.; Jansen, K. E.; Shephard, M. S., J. Phys. Conf. Ser., 125, Article 012044 pp. (2008)
[18] Czarny, O.; Huysmans, G., J. Comput. Phys., 227, 7423-7445 (2008) · Zbl 1141.76035
[19] Zhang, H. W.; Zhu, J.; Ma, Z. W.; Kan, G. Y.; Wang, X.; Zhang, W., Int. J. Comput. Fluid Dyn., 33, 393-406 (2019) · Zbl 1494.76002
[20] S. Jardin, N. Ferraro, J. Breslau, S. Hudson, D. Pfefferle, B. Tobias, M. Lanctot, Progress on Nonlinear Resistive MHD Code Verification Problems with M3D-C1, DOI, 2016.
[21] Krebs, I.; Artola, F. J.; Sovinec, C. R.; Jardin, S. C.; Bunkers, K. J.; Hoelzl, M.; Ferraro, N. M., Phys. Plasmas, 27, Article 022505 pp. (2020)
[22] Lyons, B. C.; Kim, C. C.; Liu, Y. Q.; Ferraro, N. M.; Jardin, S. C.; McClenaghan, J.; Parks, P. B.; Lao, L. L., Plasma Phys. Control. Fusion, 61, Article 064001 pp. (2019)
[23] Ferraro, N. M.; Lyons, B. C.; Kim, C. C.; Liu, Y. Q.; Jardin, S. C., Nucl. Fusion, 59, Article 016001 pp. (2018)
[24] Ferraro, N. M.; Jardin, S. C.; Snyder, P. B., Phys. Plasmas, 17, Article 102508 pp. (2010)
[25] Turnbull, A. D.; Ferraro, N. M.; Izzo, V. A.; Lazarus, E. A.; Park, J.-K.; Cooper, W. A.; Hirshman, S. P.; Lao, L. L.; Lanctot, M. J.; Lazerson, S.; Liu, Y. Q.; Reiman, A.; Turco, F., Phys. Plasmas, 20, Article 056114 pp. (2013)
[26] Liu, Y.; Kirk, A.; Gribov, Y.; Gryaznevich, M. P.; Hender, T. C.; Nardon, E., Nucl. Fusion, 51, Article 083002 pp. (2011)
[27] Zhang, H. W.; Ma, Z. W.; Zhang, W.; Sun, Y. W.; Yang, X., Phys. Plasmas, 26, Article 112502 pp. (2019)
[28] Krebs, I.; Jardin, S. C.; Günter, S.; Lackner, K.; Hoelzl, M.; Strumberger, E.; Ferraro, N., Phys. Plasmas, 24, Article 102511 pp. (2017)
[29] Wang, S.; Ma, Z., Phys. Plasmas, 22, Article 122504 pp. (2015)
[30] Duan, L.; Wang, X.; Zhong, X., J. Comput. Phys., 229, 7207-7237 (2010) · Zbl 1425.76119
[31] DeLucia, J.; Jardin, S. C.; Todd, A. M.M., J. Comput. Phys., 37, 183-204 (1980) · Zbl 0443.76094
[32] Furth, H. P.; Rutherford, P. H.; Selberg, H., Phys. Fluids, 16, 1054-1063 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.