×

Effective difference methods for solving the variable coefficient fourth-order fractional sub-diffusion equations. (English) Zbl 1535.65140

Summary: This paper is concerned with the numerical approximations for the variable coefficient fourth-order fractional sub-diffusion equations subject to the second Dirichlet boundary conditions. We construct two effective difference schemes with second order accuracy in time by applying the second order approximation to the time Caputo derivative and the sum-of-exponentials approximation. By combining the discrete energy method and the mathematical induction method, the proposed methods proved to be unconditional stable and convergent. In order to overcome the possible singularity of the solution near the initial stage, a difference scheme based on non-uniform mesh is also given. Some numerical experiments are carried out to support our theoretical results. The results indicate that the our two main schemes has the almost same accuracy and the fast scheme can reduce the storage and computational cost significantly.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] V. Srivastava, K. N. Rai, A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Model., 51 (2010), 616-624. https://doi.org/10.1016/j.mcm.2009.11.002 · Zbl 1190.35226 · doi:10.1016/j.mcm.2009.11.002
[2] Y. Z. Povstenko, Fractional Cattaneo-type equations and generalized thermoelasticity, J. Therm. Stresses, 34 (2011), 97-114. https://doi.org/10.1080/01495739.2010.511931 · doi:10.1080/01495739.2010.511931
[3] F. Mainardi, M. Reberto, R. Gorenflo, E. Scalas, Fractional caculus and continuous-time finance II: the waiting-time distribution, Physica A, 287 (2000), 468-481. https://doi.org/10.1016/S0378-4371(00)00386-1 · doi:10.1016/S0378-4371(00)00386-1
[4] D. Benson, R. Schumer, M. Meerschaert, S. Wheatcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests, Transport Porous Med., 42 (2001), 211-240. https://doi.org/10.1023/A:1006733002131
[5] I. Podlubny, Fractional Differential Equations, New York: Academic press, 1999. · Zbl 0924.34008
[6] J. B. Greer, A. L. Bertozzi, G. Sapiro, Fourth order partial differential equations on general geometries, J. Comput. Phys., 216 (2006), 216-246. https://doi.org/10.1016/j.jcp.2005.11.031 · Zbl 1097.65087 · doi:10.1016/j.jcp.2005.11.031
[7] F. Memoli, G. Sapiro, P. Thompson, Implicit brain imaging, NeuroImage, 23 (2004), 179-188. https://doi.org/10.1016/j.neuroimage.2004.07.072
[8] M. Hofer, H. Pottmann, Energy-minimizing splines in manifolds, ACM Trans. Graph, 23 (2004), 284-293. https://doi.org/10.1145/1015706.1015716 · doi:10.1145/1015706.1015716
[9] D. Halpern, O. E. Jensen, J. B. Grotberg, A theoretical study of surfactant and liquid delivery into the lung, J. Appl. Physiol., 85 (1998), 333-352. https://doi.org/10.1152/jappl.1998.85.1.333 · doi:10.1152/jappl.1998.85.1.333
[10] T. G. Myers, J. P. F. Charpin, S. J. Chapman, The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface, Phys. Fluids, 14 (8) (2002), 2788-2803. https://doi.org/10.1063/1.1488599 · Zbl 1185.76270
[11] T. G. Myers, J. P. F. Charpin, A mathematical model for atmospheric ice accretion and water flow on a cold surface, Int. J. Heat Mass Transf., 47 (2004), 5483-5500. https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.037 · Zbl 1078.76074 · doi:10.1016/j.ijheatmasstransfer.2004.06.037
[12] X. Hu, L. Zhang, On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems, Appl. Math. Comput., 218 (2012), 5019-5034. https://doi.org/10.1016/j.amc.2011.10.069 · Zbl 1262.65101 · doi:10.1016/j.amc.2011.10.069
[13] X. Hu, L. Zhang, A compact finite difference scheme for the fourth-order fractional diffusion-wave system, Comput. Phys. Commun., 182 (2011), 1645-1650. https://doi.org/10.1016/j.cpc.2011.04.013 · Zbl 1262.65102 · doi:10.1016/j.cpc.2011.04.013
[14] C. Ji, Z. Sun, Z. Hao, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions, J. Sci. Comput., 66 (2015), 1148-1174. https://doi.org/10.1007/s10915-015-0059-7 · Zbl 1373.65057 · doi:10.1007/s10915-015-0059-7
[15] P. Zhang, H. Pu, A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation, Numer Algor, 76 (2017), 573-598. https://doi.org/10.1007/s11075-017-0271-7 · Zbl 1378.65161 · doi:10.1007/s11075-017-0271-7
[16] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424-438. https://doi.org/10.1016/j.jcp.2014.09.031 · Zbl 1349.65261 · doi:10.1016/j.jcp.2014.09.031
[17] M. Ran, C. Zhang, New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order, Appl. Numer. Math, 129 (2018), 58-70. https://doi.org/10.1016/j.apnum.2018.03.005 · Zbl 1393.65015 · doi:10.1016/j.apnum.2018.03.005
[18] X. Zhao, Q. Xu, Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Appl. Math. Model., 38 (2014), 3848-3859. https://doi.org/10.1016/j.apm.2013.10.037 · Zbl 1429.65210 · doi:10.1016/j.apm.2013.10.037
[19] S. Vong, P. Lyu, Z. Wang, A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under Neumann boundary conditions, J. Sci. Comput., 66 (2016), 725-739. https://doi.org/10.1007/s10915-015-0040-5 · Zbl 1346.65041 · doi:10.1007/s10915-015-0040-5
[20] A. A. Samarskii, V. V. Andreev, Difference methods for elliptic equations (in Russian), Moscow: Izdatel’stvo Nauka, 1976. · Zbl 1310.35004
[21] Z. Sun, Numerical Methods of Partial Differential Equations (in Chinese), Beijing: Science Press, 2012.
[22] T. Yan, Z. Sun, J. Zhang, Fast evalution of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme, Commun. Comput. Phys., 22 (2017), 1028-1048. https://doi.org/10.4208/cicp.OA-2016-0136 · Zbl 1488.65306 · doi:10.4208/cicp.OA-2016-0136
[23] H. Liao, D. Li, J. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112-1133. https://doi.org/10.1137/17M1131829 · Zbl 1447.65026 · doi:10.1137/17M1131829
[24] B. Jin, R. Lazarov, Z. Zhou, Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview, Comput. Methods Appl. Mech. Engrg., 346 (2019), 332-358. https://doi.org/10.1016/j.cma.2018.12.011 · Zbl 1440.65138 · doi:10.1016/j.cma.2018.12.011
[25] M. Stynes, E. O’Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057-1079. https://doi.org/10.1137/16M1082329 · Zbl 1362.65089 · doi:10.1137/16M1082329
[26] M. Cui, A compact difference scheme for time-fractional Dirichlet biharmonic equation on temporal graded meshe, East Asian J. Appl. Math., 11 (2021), 164-180. https://doi.org/10.4208/eajam.270520.210920 · Zbl 1468.65095 · doi:10.4208/eajam.270520.210920
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.