×

Adaptive step size controllers based on Runge-Kutta and linear-neighbor methods for solving the non-stationary heat conduction equation. (English) Zbl 1535.65103

Summary: We systematically test families of explicit adaptive step size controllers for solving the diffusion or heat equation. After discretizing the space variables as in the conventional method of lines, we are left with a system of ordinary differential equations (ODEs). Different methods for estimating the local error and techniques for changing the step size when solving a system of ODEs were suggested previously by researchers. In this paper, those local error estimators and techniques are used to generate different types of adaptive step size controllers. Those controllers are applied to a system of ODEs resulting from discretizing diffusion equations. The performances of the controllers were compared in the cases of three different experiments. The first and the second system are heat conduction in homogeneous and inhomogeneous media, while the third one contains a moving heat source that can correspond to a welding process.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] E. Kovács, Á. Nagy, M. Saleh, A set of new stable, explicit, second order schemes for the non-stationary heat conduction equation, Mathematics, 9 (2021), 2284. https://doi.org/10.3390/math9182284 · doi:10.3390/math9182284
[2] E. Kovács, A class of new stable, explicit methods to solve the non‐stationary heat equation, Numer Methods Partial Differ Equ, 37 (2021), 2469-2489. https://doi.org/10.1002/num.22730 · Zbl 07776081 · doi:10.1002/num.22730
[3] E. Kovács, Á. Nagy, M. Saleh, A new stable, explicit, third‐order method for diffusion‐type problems, Adv Theory Simul, 5 (2022), 2100600. https://doi.org/10.1002/adts.202100600 · doi:10.1002/adts.202100600
[4] S. Savović, B. Drljača, A. Djordjevich, A comparative study of two different finite difference methods for solving advection-diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer processes, Ricerche di Matematica, 71 (2022), 245-252. https://doi.org/10.1007/s11587-021-00665-2 · Zbl 1490.65160 · doi:10.1007/s11587-021-00665-2
[5] S. Conde, I. Fekete, J. N. Shadid, Embedded error estimation and adaptive step-size control for optimal explicit strong stability preserving Runge-Kutta methods, [Preprint], (2018)[cited 2023 Mar 29 ]. Available from: https://doi.org/10.48550/arXiv.1806.08693.
[6] L. F. Shampine, Error estimation and control for ODEs, J Sci Comput, 25 (2005), 3-16. https://doi.org/10.1007/bf02728979 · Zbl 1203.65122 · doi:10.1007/s10915-004-4629-3
[7] L. F. Shampine, H. A. Watts, Comparing error estimators for Runge-Kutta methods, 25 (1971), 445-455. · Zbl 0221.65117
[8] R. H. Merson, An operational methods for study of integration processes, Weapon Research Establishment Conference on Data Processing, 1 (1957), 110-125.
[9] L. F. Shampine, Local extrapolation in the solution of ordinary differential equations, Math Comput, 27 (1973), 91. https://doi.org/10.2307/2005249 · Zbl 0254.65052 · doi:10.1090/S0025-5718-1973-0331803-1
[10] J. C. Butcher, P. B. Johnston, Estimating local truncation errors for Runge-Kutta methods, J Comput Appl Math, 45 (1993), 203-212. https://doi.org/10.1016/0377-0427(93)90275-G · Zbl 0789.65066 · doi:10.1016/0377-0427(93)90275-G
[11] J. H. Verner, Explicit Runge-Kutta methods with estimates of the local truncation error, SIAM J Numer Anal, 15 (1978), 772-790. https://doi.org/10.1137/0715051 · Zbl 0403.65029 · doi:10.1137/0715051
[12] R. England, Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations, Comput J, 12 (1969), 166-170. https://doi.org/10.1093/comjnl/12.2.166 · Zbl 0182.21903 · doi:10.1093/comjnl/12.2.166
[13] A. S. Chai, Error estimate of a fourth-order Runge-Kutta method with only one initial derivative evaluation, Proceedings of the April 30-May 2, 1968, spring joint computer conference, 1968,467. https://doi.org/10.1145/1468075.1468144 · doi:10.1145/1468075.1468144
[14] R. E. Scraton, Estimation of the truncation error in Runge-Kutta and allied processes, Comput J, 7 (1964), 246-248. https://doi.org/10.1093/comjnl/7.3.246 · Zbl 0126.32301 · doi:10.1093/comjnl/7.3.246
[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes The Art of Scientific Computing, Cambridge: Cambridge University Press, 2007.
[16] K. Gustafsson, M. Lundh, G. Söderlind, API stepsize control for the numerical solution of ordinary differential equations, BIT, 28 (1988), 270-287. · Zbl 0645.65039 · doi:10.1007/BF01934091
[17] K. Gustafsson, Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods, ACM Trans Math Softw, 17 (1991), 533-554. · Zbl 0900.65256 · doi:10.1145/210232.210242
[18] G. Söderlind, Automatic control and adaptive time-stepping, Numer Algorithms, 31 (2002), 281-310. · Zbl 1012.65080 · doi:10.1023/A:1021160023092
[19] G. Söderlind, Digital filters in adaptive time-stepping, ACM Trans Math Softw, 29 (2003), 1-26. · Zbl 1097.93516 · doi:10.1145/641876.641877
[20] G. Söderlind, L. Wang, Adaptive time-stepping and computational stability, J Comput Appl Math, 185 (2006), 225-243. https://doi.org/10.1016/j.cam.2005.03.008 · Zbl 1077.65086 · doi:10.1016/j.cam.2005.03.008
[21] T. Ritschel, Numerical Methods For Solution of Differential Equations, (Denmark), Doctoral Thesis of Technical University of Denmark, Lyngby, 2013.
[22] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I, Berlin: Springer, 1993. https://doi.org/10.1007/978-3-540-78862-1 · Zbl 0789.65048
[23] I. Fekete, S. Conde, J. N. Shadid, Embedded pairs for optimal explicit strong stability preserving Runge-Kutta methods, J Comput Appl Math, 412 (2022), 114325. https://doi.org/10.1016/j.cam.2022.114325 · Zbl 1495.65115 · doi:10.1016/j.cam.2022.114325
[24] David F. Griffiths and Desmond J. Higham, Numerical methods for ordinary differential equations: initial value problems, London: Springer, 2010. · Zbl 1209.65070
[25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes in C : the art of scientific computing, Cambridge: Cambridge University Press, 1992. · Zbl 0845.65001
[26] Á. Nagy, J. Majár, E. Kovács, Consistency and convergence properties of 20 recent and old numerical schemes for the diffusion equation, Algorithms, 15 (2022), 425. https://doi.org/10.3390/a15110425. · doi:10.3390/a15110425
[27] J. Feldman, A. Rechnitzer, E. Yeager, D.3: Variable Step Size Methods, In: CLP-2 Integral Calculus, (2021), 91843. Available from: https://math.libretexts.org/@go/page/91843.pdf.
[28] S. Essongue, Y. Ledoux, A. Ballu, Speeding up mesoscale thermal simulations of powder bed additive manufacturing thanks to the forward Euler time-integration scheme: A critical assessment, Finite Elem Anal Des, 211 (2022), 103825. https://doi.org/10.1016/j.finel.2022.103825 · doi:10.1016/j.finel.2022.103825
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.